![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > releqg | Structured version Visualization version GIF version |
Description: The left coset equivalence relation is a relation. (Contributed by Mario Carneiro, 14-Jun-2015.) |
Ref | Expression |
---|---|
releqg.r | ⊢ 𝑅 = (𝐺 ~QG 𝑆) |
Ref | Expression |
---|---|
releqg | ⊢ Rel 𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eqg 17794 | . . 3 ⊢ ~QG = (𝑔 ∈ V, 𝑠 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑔) ∧ (((invg‘𝑔)‘𝑥)(+g‘𝑔)𝑦) ∈ 𝑠)}) | |
2 | 1 | relmpt2opab 7427 | . 2 ⊢ Rel (𝐺 ~QG 𝑆) |
3 | releqg.r | . . 3 ⊢ 𝑅 = (𝐺 ~QG 𝑆) | |
4 | 3 | releqi 5359 | . 2 ⊢ (Rel 𝑅 ↔ Rel (𝐺 ~QG 𝑆)) |
5 | 2, 4 | mpbir 221 | 1 ⊢ Rel 𝑅 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1632 ∈ wcel 2139 Vcvv 3340 ⊆ wss 3715 {cpr 4323 Rel wrel 5271 ‘cfv 6049 (class class class)co 6813 Basecbs 16059 +gcplusg 16143 invgcminusg 17624 ~QG cqg 17791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fv 6057 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-1st 7333 df-2nd 7334 df-eqg 17794 |
This theorem is referenced by: eqger 17845 eqgid 17847 tgptsmscls 22154 |
Copyright terms: Public domain | W3C validator |