MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  releupth Structured version   Visualization version   GIF version

Theorem releupth 27177
Description: The set (EulerPaths‘𝐺) of all Eulerian paths on 𝐺 is a set of pairs by our definition of an Eulerian path, and so is a relation. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 18-Feb-2021.)
Assertion
Ref Expression
releupth Rel (EulerPaths‘𝐺)

Proof of Theorem releupth
Dummy variables 𝑓 𝑔 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-eupth 27176 . 2 EulerPaths = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝑔)𝑝𝑓:(0..^(#‘𝑓))–onto→dom (iEdg‘𝑔))})
21relmptopab 6925 1 Rel (EulerPaths‘𝐺)
Colors of variables: wff setvar class
Syntax hints:  wa 383  Vcvv 3231   class class class wbr 4685  dom cdm 5143  Rel wrel 5148  ontowfo 5924  cfv 5926  (class class class)co 6690  0cc0 9974  ..^cfzo 12504  #chash 13157  iEdgciedg 25920  Trailsctrls 26643  EulerPathsceupth 27175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fv 5934  df-eupth 27176
This theorem is referenced by:  eulerpath  27219
  Copyright terms: Public domain W3C validator