Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relexpaddss Structured version   Visualization version   GIF version

Theorem relexpaddss 37491
Description: The composition of two powers of a relation is a subset of the relation raised to the sum of those exponents. This is equality where 𝑅 is a relation as shown by relexpaddd 13728 or when the sum of the powers isn't 1 as shown by relexpaddg 13727. (Contributed by RP, 3-Jun-2020.)
Assertion
Ref Expression
relexpaddss ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))

Proof of Theorem relexpaddss
StepHypRef Expression
1 elnn0 11238 . . 3 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
2 elnn0 11238 . . . . . 6 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
32biimpi 206 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
4 relexpaddnn 13725 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))
5 eqimss 3636 . . . . . . . 8 (((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))
64, 5syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))
763exp 1261 . . . . . 6 (𝑁 ∈ ℕ → (𝑀 ∈ ℕ → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
8 elnn1uz2 11709 . . . . . . 7 (𝑀 ∈ ℕ ↔ (𝑀 = 1 ∨ 𝑀 ∈ (ℤ‘2)))
9 relco 5592 . . . . . . . . . . . . . 14 Rel (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅)
10 dfrel2 5542 . . . . . . . . . . . . . . 15 (Rel (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) = (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅))
1110biimpi 206 . . . . . . . . . . . . . 14 (Rel (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) → (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) = (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅))
129, 11ax-mp 5 . . . . . . . . . . . . 13 (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) = (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅)
13 cnvco 5268 . . . . . . . . . . . . . . . . 17 (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) = (𝑅( I ↾ (dom 𝑅 ∪ ran 𝑅)))
14 cnvresid 5926 . . . . . . . . . . . . . . . . . 18 ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))
1514coeq2i 5242 . . . . . . . . . . . . . . . . 17 (𝑅( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
16 coires1 5612 . . . . . . . . . . . . . . . . 17 (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅))
1713, 15, 163eqtri 2647 . . . . . . . . . . . . . . . 16 (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) = (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅))
18 eqimss 3636 . . . . . . . . . . . . . . . 16 ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) = (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) → (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) ⊆ (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)))
1917, 18ax-mp 5 . . . . . . . . . . . . . . 15 (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) ⊆ (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅))
20 cnvss 5254 . . . . . . . . . . . . . . 15 ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) ⊆ (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) → (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) ⊆ (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)))
2119, 20ax-mp 5 . . . . . . . . . . . . . 14 (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) ⊆ (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅))
22 resss 5381 . . . . . . . . . . . . . . 15 (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑅
23 cnvss 5254 . . . . . . . . . . . . . . 15 ((𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑅(𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑅)
2422, 23ax-mp 5 . . . . . . . . . . . . . 14 (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑅
2521, 24sstri 3592 . . . . . . . . . . . . 13 (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) ⊆ 𝑅
2612, 25eqsstr3i 3615 . . . . . . . . . . . 12 (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) ⊆ 𝑅
27 cnvcnvss 5548 . . . . . . . . . . . 12 𝑅𝑅
2826, 27sstri 3592 . . . . . . . . . . 11 (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) ⊆ 𝑅
2928a1i 11 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) ⊆ 𝑅)
30 simp1 1059 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → 𝑁 = 0)
3130oveq2d 6620 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟0))
32 relexp0g 13696 . . . . . . . . . . . . 13 (𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
33323ad2ant3 1082 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
3431, 33eqtrd 2655 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
35 simp2 1060 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → 𝑀 = 1)
3635oveq2d 6620 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → (𝑅𝑟𝑀) = (𝑅𝑟1))
37 relexp1g 13700 . . . . . . . . . . . . 13 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
38373ad2ant3 1082 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → (𝑅𝑟1) = 𝑅)
3936, 38eqtrd 2655 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → (𝑅𝑟𝑀) = 𝑅)
4034, 39coeq12d 5246 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅))
4130, 35oveq12d 6622 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → (𝑁 + 𝑀) = (0 + 1))
42 1cnd 10000 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → 1 ∈ ℂ)
4342addid2d 10181 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → (0 + 1) = 1)
4441, 43eqtrd 2655 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → (𝑁 + 𝑀) = 1)
4544oveq2d 6620 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → (𝑅𝑟(𝑁 + 𝑀)) = (𝑅𝑟1))
4645, 38eqtrd 2655 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → (𝑅𝑟(𝑁 + 𝑀)) = 𝑅)
4729, 40, 463sstr4d 3627 . . . . . . . . 9 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))
48473exp 1261 . . . . . . . 8 (𝑁 = 0 → (𝑀 = 1 → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
49 coires1 5612 . . . . . . . . . . . . . 14 ((𝑅𝑟𝑀) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = ((𝑅𝑟𝑀) ↾ (dom 𝑅 ∪ ran 𝑅))
50 simp2 1060 . . . . . . . . . . . . . . . 16 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → 𝑀 ∈ (ℤ‘2))
51 cnvexg 7059 . . . . . . . . . . . . . . . . 17 (𝑅𝑉𝑅 ∈ V)
52513ad2ant3 1082 . . . . . . . . . . . . . . . 16 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → 𝑅 ∈ V)
53 relexpuzrel 13726 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ (ℤ‘2) ∧ 𝑅 ∈ V) → Rel (𝑅𝑟𝑀))
5450, 52, 53syl2anc 692 . . . . . . . . . . . . . . 15 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → Rel (𝑅𝑟𝑀))
55 eluz2nn 11670 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℕ)
5650, 55syl 17 . . . . . . . . . . . . . . . . 17 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → 𝑀 ∈ ℕ)
57 relexpnndm 13715 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ ∧ 𝑅 ∈ V) → dom (𝑅𝑟𝑀) ⊆ dom 𝑅)
5856, 52, 57syl2anc 692 . . . . . . . . . . . . . . . 16 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → dom (𝑅𝑟𝑀) ⊆ dom 𝑅)
59 df-rn 5085 . . . . . . . . . . . . . . . . 17 ran 𝑅 = dom 𝑅
60 ssun2 3755 . . . . . . . . . . . . . . . . 17 ran 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅)
6159, 60eqsstr3i 3615 . . . . . . . . . . . . . . . 16 dom 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅)
6258, 61syl6ss 3595 . . . . . . . . . . . . . . 15 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → dom (𝑅𝑟𝑀) ⊆ (dom 𝑅 ∪ ran 𝑅))
63 relssres 5396 . . . . . . . . . . . . . . 15 ((Rel (𝑅𝑟𝑀) ∧ dom (𝑅𝑟𝑀) ⊆ (dom 𝑅 ∪ ran 𝑅)) → ((𝑅𝑟𝑀) ↾ (dom 𝑅 ∪ ran 𝑅)) = (𝑅𝑟𝑀))
6454, 62, 63syl2anc 692 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → ((𝑅𝑟𝑀) ↾ (dom 𝑅 ∪ ran 𝑅)) = (𝑅𝑟𝑀))
6549, 64syl5eq 2667 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → ((𝑅𝑟𝑀) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅𝑟𝑀))
66 cnvco 5268 . . . . . . . . . . . . . 14 (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ (𝑅𝑟𝑀)) = ((𝑅𝑟𝑀) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
67 eluzge2nn0 11671 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℕ0)
6850, 67syl 17 . . . . . . . . . . . . . . . 16 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → 𝑀 ∈ ℕ0)
69 simp3 1061 . . . . . . . . . . . . . . . 16 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → 𝑅𝑉)
70 relexpcnv 13709 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0𝑅𝑉) → (𝑅𝑟𝑀) = (𝑅𝑟𝑀))
7168, 69, 70syl2anc 692 . . . . . . . . . . . . . . 15 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑅𝑟𝑀) = (𝑅𝑟𝑀))
7214a1i 11 . . . . . . . . . . . . . . 15 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
7371, 72coeq12d 5246 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → ((𝑅𝑟𝑀) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = ((𝑅𝑟𝑀) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))))
7466, 73syl5eq 2667 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ (𝑅𝑟𝑀)) = ((𝑅𝑟𝑀) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))))
7565, 74, 713eqtr4d 2665 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟𝑀))
76 relco 5592 . . . . . . . . . . . . 13 Rel (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ (𝑅𝑟𝑀))
77 relexpuzrel 13726 . . . . . . . . . . . . . 14 ((𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → Rel (𝑅𝑟𝑀))
78773adant1 1077 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → Rel (𝑅𝑟𝑀))
79 cnveqb 5549 . . . . . . . . . . . . 13 ((Rel (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ (𝑅𝑟𝑀)) ∧ Rel (𝑅𝑟𝑀)) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟𝑀) ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟𝑀)))
8076, 78, 79sylancr 694 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟𝑀) ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟𝑀)))
8175, 80mpbird 247 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟𝑀))
82 simp1 1059 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → 𝑁 = 0)
8382oveq2d 6620 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟0))
84323ad2ant3 1082 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
8583, 84eqtrd 2655 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
8685coeq1d 5243 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ (𝑅𝑟𝑀)))
8782oveq1d 6619 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑁 + 𝑀) = (0 + 𝑀))
88 eluzelcn 11643 . . . . . . . . . . . . . . 15 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℂ)
8950, 88syl 17 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → 𝑀 ∈ ℂ)
9089addid2d 10181 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (0 + 𝑀) = 𝑀)
9187, 90eqtrd 2655 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑁 + 𝑀) = 𝑀)
9291oveq2d 6620 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑅𝑟(𝑁 + 𝑀)) = (𝑅𝑟𝑀))
9381, 86, 923eqtr4d 2665 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))
9493, 5syl 17 . . . . . . . . 9 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))
95943exp 1261 . . . . . . . 8 (𝑁 = 0 → (𝑀 ∈ (ℤ‘2) → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
9648, 95jaod 395 . . . . . . 7 (𝑁 = 0 → ((𝑀 = 1 ∨ 𝑀 ∈ (ℤ‘2)) → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
978, 96syl5bi 232 . . . . . 6 (𝑁 = 0 → (𝑀 ∈ ℕ → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
987, 97jaoi 394 . . . . 5 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑀 ∈ ℕ → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
993, 98syl 17 . . . 4 (𝑁 ∈ ℕ0 → (𝑀 ∈ ℕ → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
100 elnn1uz2 11709 . . . . . . . 8 (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
101100biimpi 206 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
102 coires1 5612 . . . . . . . . . . . 12 (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅))
103 resss 5381 . . . . . . . . . . . 12 (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑅
104102, 103eqsstri 3614 . . . . . . . . . . 11 (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) ⊆ 𝑅
105104a1i 11 . . . . . . . . . 10 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) ⊆ 𝑅)
106 simp1 1059 . . . . . . . . . . . . 13 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 𝑁 = 1)
107106oveq2d 6620 . . . . . . . . . . . 12 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟1))
108373ad2ant3 1082 . . . . . . . . . . . 12 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟1) = 𝑅)
109107, 108eqtrd 2655 . . . . . . . . . . 11 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = 𝑅)
110 simp2 1060 . . . . . . . . . . . . 13 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 𝑀 = 0)
111110oveq2d 6620 . . . . . . . . . . . 12 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑀) = (𝑅𝑟0))
112323ad2ant3 1082 . . . . . . . . . . . 12 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
113111, 112eqtrd 2655 . . . . . . . . . . 11 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑀) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
114109, 113coeq12d 5246 . . . . . . . . . 10 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))))
115106, 110oveq12d 6622 . . . . . . . . . . . . 13 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑁 + 𝑀) = (1 + 0))
116 1cnd 10000 . . . . . . . . . . . . . 14 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 1 ∈ ℂ)
117116addid1d 10180 . . . . . . . . . . . . 13 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (1 + 0) = 1)
118115, 117eqtrd 2655 . . . . . . . . . . . 12 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑁 + 𝑀) = 1)
119118oveq2d 6620 . . . . . . . . . . 11 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟(𝑁 + 𝑀)) = (𝑅𝑟1))
120119, 108eqtrd 2655 . . . . . . . . . 10 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟(𝑁 + 𝑀)) = 𝑅)
121105, 114, 1203sstr4d 3627 . . . . . . . . 9 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))
1221213exp 1261 . . . . . . . 8 (𝑁 = 1 → (𝑀 = 0 → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
123 coires1 5612 . . . . . . . . . . . 12 ((𝑅𝑟𝑁) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = ((𝑅𝑟𝑁) ↾ (dom 𝑅 ∪ ran 𝑅))
124 relexpuzrel 13726 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑅𝑉) → Rel (𝑅𝑟𝑁))
1251243adant2 1078 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → Rel (𝑅𝑟𝑁))
126 simp1 1059 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 𝑁 ∈ (ℤ‘2))
127 eluz2nn 11670 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
128126, 127syl 17 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 𝑁 ∈ ℕ)
129 simp3 1061 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 𝑅𝑉)
130 relexpnndm 13715 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) ⊆ dom 𝑅)
131128, 129, 130syl2anc 692 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) ⊆ dom 𝑅)
132 ssun1 3754 . . . . . . . . . . . . . 14 dom 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅)
133131, 132syl6ss 3595 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))
134 relssres 5396 . . . . . . . . . . . . 13 ((Rel (𝑅𝑟𝑁) ∧ dom (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅)) → ((𝑅𝑟𝑁) ↾ (dom 𝑅 ∪ ran 𝑅)) = (𝑅𝑟𝑁))
135125, 133, 134syl2anc 692 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ↾ (dom 𝑅 ∪ ran 𝑅)) = (𝑅𝑟𝑁))
136123, 135syl5eq 2667 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅𝑟𝑁))
137 simp2 1060 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 𝑀 = 0)
138137oveq2d 6620 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑀) = (𝑅𝑟0))
139323ad2ant3 1082 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
140138, 139eqtrd 2655 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑀) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
141140coeq2d 5244 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = ((𝑅𝑟𝑁) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))))
142137oveq2d 6620 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑁 + 𝑀) = (𝑁 + 0))
143 eluzelcn 11643 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℂ)
144126, 143syl 17 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 𝑁 ∈ ℂ)
145144addid1d 10180 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑁 + 0) = 𝑁)
146142, 145eqtrd 2655 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑁 + 𝑀) = 𝑁)
147146oveq2d 6620 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟(𝑁 + 𝑀)) = (𝑅𝑟𝑁))
148136, 141, 1473eqtr4d 2665 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))
149148, 5syl 17 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))
1501493exp 1261 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑀 = 0 → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
151122, 150jaoi 394 . . . . . . 7 ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)) → (𝑀 = 0 → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
152101, 151syl 17 . . . . . 6 (𝑁 ∈ ℕ → (𝑀 = 0 → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
153 coires1 5612 . . . . . . . . . 10 (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ↾ (dom 𝑅 ∪ ran 𝑅))
154 resres 5368 . . . . . . . . . 10 (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ↾ (dom 𝑅 ∪ ran 𝑅)) = ( I ↾ ((dom 𝑅 ∪ ran 𝑅) ∩ (dom 𝑅 ∪ ran 𝑅)))
155 inidm 3800 . . . . . . . . . . 11 ((dom 𝑅 ∪ ran 𝑅) ∩ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅)
156155reseq2i 5353 . . . . . . . . . 10 ( I ↾ ((dom 𝑅 ∪ ran 𝑅) ∩ (dom 𝑅 ∪ ran 𝑅))) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))
157153, 154, 1563eqtri 2647 . . . . . . . . 9 (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))
158 simp1 1059 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 𝑁 = 0)
159158oveq2d 6620 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟0))
160323ad2ant3 1082 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
161159, 160eqtrd 2655 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
162 simp2 1060 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 𝑀 = 0)
163162oveq2d 6620 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑀) = (𝑅𝑟0))
164163, 160eqtrd 2655 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑀) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
165161, 164coeq12d 5246 . . . . . . . . 9 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))))
166158, 162oveq12d 6622 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑁 + 𝑀) = (0 + 0))
167 00id 10155 . . . . . . . . . . . . 13 (0 + 0) = 0
168167a1i 11 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (0 + 0) = 0)
169166, 168eqtrd 2655 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑁 + 𝑀) = 0)
170169oveq2d 6620 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟(𝑁 + 𝑀)) = (𝑅𝑟0))
171170, 160eqtrd 2655 . . . . . . . . 9 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟(𝑁 + 𝑀)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
172157, 165, 1713eqtr4a 2681 . . . . . . . 8 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))
173172, 5syl 17 . . . . . . 7 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))
1741733exp 1261 . . . . . 6 (𝑁 = 0 → (𝑀 = 0 → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
175152, 174jaoi 394 . . . . 5 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑀 = 0 → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
1763, 175syl 17 . . . 4 (𝑁 ∈ ℕ0 → (𝑀 = 0 → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
17799, 176jaod 395 . . 3 (𝑁 ∈ ℕ0 → ((𝑀 ∈ ℕ ∨ 𝑀 = 0) → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
1781, 177syl5bi 232 . 2 (𝑁 ∈ ℕ0 → (𝑀 ∈ ℕ0 → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
1791783imp 1254 1 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  w3a 1036   = wceq 1480  wcel 1987  Vcvv 3186  cun 3553  cin 3554  wss 3555   I cid 4984  ccnv 5073  dom cdm 5074  ran crn 5075  cres 5076  ccom 5078  Rel wrel 5079  cfv 5847  (class class class)co 6604  cc 9878  0cc0 9880  1c1 9881   + caddc 9883  cn 10964  2c2 11014  0cn0 11236  cuz 11631  𝑟crelexp 13694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-n0 11237  df-z 11322  df-uz 11632  df-seq 12742  df-relexp 13695
This theorem is referenced by:  iunrelexpuztr  37492  cotrclrcl  37515
  Copyright terms: Public domain W3C validator