Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relexpmulnn Structured version   Visualization version   GIF version

Theorem relexpmulnn 37820
Description: With exponents limited to the counting numbers, the composition of powers of a relation is the relation raised to the product of exponents. (Contributed by RP, 13-Jun-2020.)
Assertion
Ref Expression
relexpmulnn (((𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ (𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))

Proof of Theorem relexpmulnn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6643 . . . . . . . . 9 (𝑥 = 1 → ((𝑅𝑟𝐽)↑𝑟𝑥) = ((𝑅𝑟𝐽)↑𝑟1))
2 oveq2 6643 . . . . . . . . . 10 (𝑥 = 1 → (𝐽 · 𝑥) = (𝐽 · 1))
32oveq2d 6651 . . . . . . . . 9 (𝑥 = 1 → (𝑅𝑟(𝐽 · 𝑥)) = (𝑅𝑟(𝐽 · 1)))
41, 3eqeq12d 2635 . . . . . . . 8 (𝑥 = 1 → (((𝑅𝑟𝐽)↑𝑟𝑥) = (𝑅𝑟(𝐽 · 𝑥)) ↔ ((𝑅𝑟𝐽)↑𝑟1) = (𝑅𝑟(𝐽 · 1))))
54imbi2d 330 . . . . . . 7 (𝑥 = 1 → (((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝑥) = (𝑅𝑟(𝐽 · 𝑥))) ↔ ((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → ((𝑅𝑟𝐽)↑𝑟1) = (𝑅𝑟(𝐽 · 1)))))
6 oveq2 6643 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑅𝑟𝐽)↑𝑟𝑥) = ((𝑅𝑟𝐽)↑𝑟𝑦))
7 oveq2 6643 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝐽 · 𝑥) = (𝐽 · 𝑦))
87oveq2d 6651 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑅𝑟(𝐽 · 𝑥)) = (𝑅𝑟(𝐽 · 𝑦)))
96, 8eqeq12d 2635 . . . . . . . 8 (𝑥 = 𝑦 → (((𝑅𝑟𝐽)↑𝑟𝑥) = (𝑅𝑟(𝐽 · 𝑥)) ↔ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))))
109imbi2d 330 . . . . . . 7 (𝑥 = 𝑦 → (((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝑥) = (𝑅𝑟(𝐽 · 𝑥))) ↔ ((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦)))))
11 oveq2 6643 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → ((𝑅𝑟𝐽)↑𝑟𝑥) = ((𝑅𝑟𝐽)↑𝑟(𝑦 + 1)))
12 oveq2 6643 . . . . . . . . . 10 (𝑥 = (𝑦 + 1) → (𝐽 · 𝑥) = (𝐽 · (𝑦 + 1)))
1312oveq2d 6651 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (𝑅𝑟(𝐽 · 𝑥)) = (𝑅𝑟(𝐽 · (𝑦 + 1))))
1411, 13eqeq12d 2635 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (((𝑅𝑟𝐽)↑𝑟𝑥) = (𝑅𝑟(𝐽 · 𝑥)) ↔ ((𝑅𝑟𝐽)↑𝑟(𝑦 + 1)) = (𝑅𝑟(𝐽 · (𝑦 + 1)))))
1514imbi2d 330 . . . . . . 7 (𝑥 = (𝑦 + 1) → (((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝑥) = (𝑅𝑟(𝐽 · 𝑥))) ↔ ((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → ((𝑅𝑟𝐽)↑𝑟(𝑦 + 1)) = (𝑅𝑟(𝐽 · (𝑦 + 1))))))
16 oveq2 6643 . . . . . . . . 9 (𝑥 = 𝐾 → ((𝑅𝑟𝐽)↑𝑟𝑥) = ((𝑅𝑟𝐽)↑𝑟𝐾))
17 oveq2 6643 . . . . . . . . . 10 (𝑥 = 𝐾 → (𝐽 · 𝑥) = (𝐽 · 𝐾))
1817oveq2d 6651 . . . . . . . . 9 (𝑥 = 𝐾 → (𝑅𝑟(𝐽 · 𝑥)) = (𝑅𝑟(𝐽 · 𝐾)))
1916, 18eqeq12d 2635 . . . . . . . 8 (𝑥 = 𝐾 → (((𝑅𝑟𝐽)↑𝑟𝑥) = (𝑅𝑟(𝐽 · 𝑥)) ↔ ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟(𝐽 · 𝐾))))
2019imbi2d 330 . . . . . . 7 (𝑥 = 𝐾 → (((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝑥) = (𝑅𝑟(𝐽 · 𝑥))) ↔ ((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟(𝐽 · 𝐾)))))
21 ovexd 6665 . . . . . . . . 9 ((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → (𝑅𝑟𝐽) ∈ V)
2221relexp1d 13752 . . . . . . . 8 ((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → ((𝑅𝑟𝐽)↑𝑟1) = (𝑅𝑟𝐽))
23 simp1 1059 . . . . . . . . . . 11 ((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → 𝐽 ∈ ℕ)
24 nnre 11012 . . . . . . . . . . 11 (𝐽 ∈ ℕ → 𝐽 ∈ ℝ)
25 ax-1rid 9991 . . . . . . . . . . 11 (𝐽 ∈ ℝ → (𝐽 · 1) = 𝐽)
2623, 24, 253syl 18 . . . . . . . . . 10 ((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → (𝐽 · 1) = 𝐽)
2726eqcomd 2626 . . . . . . . . 9 ((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → 𝐽 = (𝐽 · 1))
2827oveq2d 6651 . . . . . . . 8 ((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → (𝑅𝑟𝐽) = (𝑅𝑟(𝐽 · 1)))
2922, 28eqtrd 2654 . . . . . . 7 ((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → ((𝑅𝑟𝐽)↑𝑟1) = (𝑅𝑟(𝐽 · 1)))
30 ovex 6663 . . . . . . . . . . 11 (𝑅𝑟𝐽) ∈ V
31 simp1 1059 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → 𝑦 ∈ ℕ)
32 relexpsucnnr 13746 . . . . . . . . . . 11 (((𝑅𝑟𝐽) ∈ V ∧ 𝑦 ∈ ℕ) → ((𝑅𝑟𝐽)↑𝑟(𝑦 + 1)) = (((𝑅𝑟𝐽)↑𝑟𝑦) ∘ (𝑅𝑟𝐽)))
3330, 31, 32sylancr 694 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → ((𝑅𝑟𝐽)↑𝑟(𝑦 + 1)) = (((𝑅𝑟𝐽)↑𝑟𝑦) ∘ (𝑅𝑟𝐽)))
34 simp3 1061 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦)))
3534coeq1d 5272 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → (((𝑅𝑟𝐽)↑𝑟𝑦) ∘ (𝑅𝑟𝐽)) = ((𝑅𝑟(𝐽 · 𝑦)) ∘ (𝑅𝑟𝐽)))
36 simp21 1092 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → 𝐽 ∈ ℕ)
3736, 31nnmulcld 11053 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → (𝐽 · 𝑦) ∈ ℕ)
38 simp22 1093 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → 𝑅𝑉)
39 relexpaddnn 13772 . . . . . . . . . . . . 13 (((𝐽 · 𝑦) ∈ ℕ ∧ 𝐽 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟(𝐽 · 𝑦)) ∘ (𝑅𝑟𝐽)) = (𝑅𝑟((𝐽 · 𝑦) + 𝐽)))
4037, 36, 38, 39syl3anc 1324 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → ((𝑅𝑟(𝐽 · 𝑦)) ∘ (𝑅𝑟𝐽)) = (𝑅𝑟((𝐽 · 𝑦) + 𝐽)))
4135, 40eqtrd 2654 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → (((𝑅𝑟𝐽)↑𝑟𝑦) ∘ (𝑅𝑟𝐽)) = (𝑅𝑟((𝐽 · 𝑦) + 𝐽)))
4236nncnd 11021 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → 𝐽 ∈ ℂ)
4331nncnd 11021 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → 𝑦 ∈ ℂ)
44 1cnd 10041 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → 1 ∈ ℂ)
4542, 43, 44adddid 10049 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → (𝐽 · (𝑦 + 1)) = ((𝐽 · 𝑦) + (𝐽 · 1)))
4642mulid1d 10042 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → (𝐽 · 1) = 𝐽)
4746oveq2d 6651 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → ((𝐽 · 𝑦) + (𝐽 · 1)) = ((𝐽 · 𝑦) + 𝐽))
4845, 47eqtr2d 2655 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → ((𝐽 · 𝑦) + 𝐽) = (𝐽 · (𝑦 + 1)))
4948oveq2d 6651 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → (𝑅𝑟((𝐽 · 𝑦) + 𝐽)) = (𝑅𝑟(𝐽 · (𝑦 + 1))))
5041, 49eqtrd 2654 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → (((𝑅𝑟𝐽)↑𝑟𝑦) ∘ (𝑅𝑟𝐽)) = (𝑅𝑟(𝐽 · (𝑦 + 1))))
5133, 50eqtrd 2654 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → ((𝑅𝑟𝐽)↑𝑟(𝑦 + 1)) = (𝑅𝑟(𝐽 · (𝑦 + 1))))
52513exp 1262 . . . . . . . 8 (𝑦 ∈ ℕ → ((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → (((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦)) → ((𝑅𝑟𝐽)↑𝑟(𝑦 + 1)) = (𝑅𝑟(𝐽 · (𝑦 + 1))))))
5352a2d 29 . . . . . . 7 (𝑦 ∈ ℕ → (((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → ((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → ((𝑅𝑟𝐽)↑𝑟(𝑦 + 1)) = (𝑅𝑟(𝐽 · (𝑦 + 1))))))
545, 10, 15, 20, 29, 53nnind 11023 . . . . . 6 (𝐾 ∈ ℕ → ((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟(𝐽 · 𝐾))))
55543expd 1282 . . . . 5 (𝐾 ∈ ℕ → (𝐽 ∈ ℕ → (𝑅𝑉 → (𝐼 = (𝐽 · 𝐾) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟(𝐽 · 𝐾))))))
5655impcom 446 . . . 4 ((𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝑅𝑉 → (𝐼 = (𝐽 · 𝐾) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟(𝐽 · 𝐾)))))
5756impd 447 . . 3 ((𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((𝑅𝑉𝐼 = (𝐽 · 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟(𝐽 · 𝐾))))
5857impcom 446 . 2 (((𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ (𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟(𝐽 · 𝐾)))
59 simplr 791 . . . 4 (((𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ (𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → 𝐼 = (𝐽 · 𝐾))
6059eqcomd 2626 . . 3 (((𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ (𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → (𝐽 · 𝐾) = 𝐼)
6160oveq2d 6651 . 2 (((𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ (𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → (𝑅𝑟(𝐽 · 𝐾)) = (𝑅𝑟𝐼))
6258, 61eqtrd 2654 1 (((𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ (𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1481  wcel 1988  Vcvv 3195  ccom 5108  (class class class)co 6635  cr 9920  1c1 9922   + caddc 9924   · cmul 9926  cn 11005  𝑟crelexp 13741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-n0 11278  df-z 11363  df-uz 11673  df-seq 12785  df-relexp 13742
This theorem is referenced by:  relexpmulg  37821
  Copyright terms: Public domain W3C validator