MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexpsucnnl Structured version   Visualization version   GIF version

Theorem relexpsucnnl 13816
Description: A reduction for relation exponentiation to the left. (Contributed by RP, 23-May-2020.)
Assertion
Ref Expression
relexpsucnnl ((𝑅𝑉𝑁 ∈ ℕ) → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁)))

Proof of Theorem relexpsucnnl
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6697 . . . . . 6 (𝑛 = 1 → (𝑛 + 1) = (1 + 1))
21oveq2d 6706 . . . . 5 (𝑛 = 1 → (𝑅𝑟(𝑛 + 1)) = (𝑅𝑟(1 + 1)))
3 oveq2 6698 . . . . . 6 (𝑛 = 1 → (𝑅𝑟𝑛) = (𝑅𝑟1))
43coeq2d 5317 . . . . 5 (𝑛 = 1 → (𝑅 ∘ (𝑅𝑟𝑛)) = (𝑅 ∘ (𝑅𝑟1)))
52, 4eqeq12d 2666 . . . 4 (𝑛 = 1 → ((𝑅𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅𝑟𝑛)) ↔ (𝑅𝑟(1 + 1)) = (𝑅 ∘ (𝑅𝑟1))))
65imbi2d 329 . . 3 (𝑛 = 1 → ((𝑅𝑉 → (𝑅𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅𝑟𝑛))) ↔ (𝑅𝑉 → (𝑅𝑟(1 + 1)) = (𝑅 ∘ (𝑅𝑟1)))))
7 oveq1 6697 . . . . . 6 (𝑛 = 𝑚 → (𝑛 + 1) = (𝑚 + 1))
87oveq2d 6706 . . . . 5 (𝑛 = 𝑚 → (𝑅𝑟(𝑛 + 1)) = (𝑅𝑟(𝑚 + 1)))
9 oveq2 6698 . . . . . 6 (𝑛 = 𝑚 → (𝑅𝑟𝑛) = (𝑅𝑟𝑚))
109coeq2d 5317 . . . . 5 (𝑛 = 𝑚 → (𝑅 ∘ (𝑅𝑟𝑛)) = (𝑅 ∘ (𝑅𝑟𝑚)))
118, 10eqeq12d 2666 . . . 4 (𝑛 = 𝑚 → ((𝑅𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅𝑟𝑛)) ↔ (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚))))
1211imbi2d 329 . . 3 (𝑛 = 𝑚 → ((𝑅𝑉 → (𝑅𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅𝑟𝑛))) ↔ (𝑅𝑉 → (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚)))))
13 oveq1 6697 . . . . . 6 (𝑛 = (𝑚 + 1) → (𝑛 + 1) = ((𝑚 + 1) + 1))
1413oveq2d 6706 . . . . 5 (𝑛 = (𝑚 + 1) → (𝑅𝑟(𝑛 + 1)) = (𝑅𝑟((𝑚 + 1) + 1)))
15 oveq2 6698 . . . . . 6 (𝑛 = (𝑚 + 1) → (𝑅𝑟𝑛) = (𝑅𝑟(𝑚 + 1)))
1615coeq2d 5317 . . . . 5 (𝑛 = (𝑚 + 1) → (𝑅 ∘ (𝑅𝑟𝑛)) = (𝑅 ∘ (𝑅𝑟(𝑚 + 1))))
1714, 16eqeq12d 2666 . . . 4 (𝑛 = (𝑚 + 1) → ((𝑅𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅𝑟𝑛)) ↔ (𝑅𝑟((𝑚 + 1) + 1)) = (𝑅 ∘ (𝑅𝑟(𝑚 + 1)))))
1817imbi2d 329 . . 3 (𝑛 = (𝑚 + 1) → ((𝑅𝑉 → (𝑅𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅𝑟𝑛))) ↔ (𝑅𝑉 → (𝑅𝑟((𝑚 + 1) + 1)) = (𝑅 ∘ (𝑅𝑟(𝑚 + 1))))))
19 oveq1 6697 . . . . . 6 (𝑛 = 𝑁 → (𝑛 + 1) = (𝑁 + 1))
2019oveq2d 6706 . . . . 5 (𝑛 = 𝑁 → (𝑅𝑟(𝑛 + 1)) = (𝑅𝑟(𝑁 + 1)))
21 oveq2 6698 . . . . . 6 (𝑛 = 𝑁 → (𝑅𝑟𝑛) = (𝑅𝑟𝑁))
2221coeq2d 5317 . . . . 5 (𝑛 = 𝑁 → (𝑅 ∘ (𝑅𝑟𝑛)) = (𝑅 ∘ (𝑅𝑟𝑁)))
2320, 22eqeq12d 2666 . . . 4 (𝑛 = 𝑁 → ((𝑅𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅𝑟𝑛)) ↔ (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁))))
2423imbi2d 329 . . 3 (𝑛 = 𝑁 → ((𝑅𝑉 → (𝑅𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅𝑟𝑛))) ↔ (𝑅𝑉 → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁)))))
25 relexp1g 13810 . . . . 5 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
2625coeq1d 5316 . . . 4 (𝑅𝑉 → ((𝑅𝑟1) ∘ 𝑅) = (𝑅𝑅))
27 1nn 11069 . . . . 5 1 ∈ ℕ
28 relexpsucnnr 13809 . . . . 5 ((𝑅𝑉 ∧ 1 ∈ ℕ) → (𝑅𝑟(1 + 1)) = ((𝑅𝑟1) ∘ 𝑅))
2927, 28mpan2 707 . . . 4 (𝑅𝑉 → (𝑅𝑟(1 + 1)) = ((𝑅𝑟1) ∘ 𝑅))
3025coeq2d 5317 . . . 4 (𝑅𝑉 → (𝑅 ∘ (𝑅𝑟1)) = (𝑅𝑅))
3126, 29, 303eqtr4d 2695 . . 3 (𝑅𝑉 → (𝑅𝑟(1 + 1)) = (𝑅 ∘ (𝑅𝑟1)))
32 coeq1 5312 . . . . . . . . 9 ((𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚)) → ((𝑅𝑟(𝑚 + 1)) ∘ 𝑅) = ((𝑅 ∘ (𝑅𝑟𝑚)) ∘ 𝑅))
33 coass 5692 . . . . . . . . 9 ((𝑅 ∘ (𝑅𝑟𝑚)) ∘ 𝑅) = (𝑅 ∘ ((𝑅𝑟𝑚) ∘ 𝑅))
3432, 33syl6eq 2701 . . . . . . . 8 ((𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚)) → ((𝑅𝑟(𝑚 + 1)) ∘ 𝑅) = (𝑅 ∘ ((𝑅𝑟𝑚) ∘ 𝑅)))
3534adantl 481 . . . . . . 7 (((𝑅𝑉𝑚 ∈ ℕ) ∧ (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚))) → ((𝑅𝑟(𝑚 + 1)) ∘ 𝑅) = (𝑅 ∘ ((𝑅𝑟𝑚) ∘ 𝑅)))
36 simpl 472 . . . . . . . 8 (((𝑅𝑉𝑚 ∈ ℕ) ∧ (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚))) → (𝑅𝑉𝑚 ∈ ℕ))
37 peano2nn 11070 . . . . . . . . 9 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ)
3837anim2i 592 . . . . . . . 8 ((𝑅𝑉𝑚 ∈ ℕ) → (𝑅𝑉 ∧ (𝑚 + 1) ∈ ℕ))
39 relexpsucnnr 13809 . . . . . . . 8 ((𝑅𝑉 ∧ (𝑚 + 1) ∈ ℕ) → (𝑅𝑟((𝑚 + 1) + 1)) = ((𝑅𝑟(𝑚 + 1)) ∘ 𝑅))
4036, 38, 393syl 18 . . . . . . 7 (((𝑅𝑉𝑚 ∈ ℕ) ∧ (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚))) → (𝑅𝑟((𝑚 + 1) + 1)) = ((𝑅𝑟(𝑚 + 1)) ∘ 𝑅))
41 relexpsucnnr 13809 . . . . . . . . 9 ((𝑅𝑉𝑚 ∈ ℕ) → (𝑅𝑟(𝑚 + 1)) = ((𝑅𝑟𝑚) ∘ 𝑅))
4241adantr 480 . . . . . . . 8 (((𝑅𝑉𝑚 ∈ ℕ) ∧ (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚))) → (𝑅𝑟(𝑚 + 1)) = ((𝑅𝑟𝑚) ∘ 𝑅))
4342coeq2d 5317 . . . . . . 7 (((𝑅𝑉𝑚 ∈ ℕ) ∧ (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚))) → (𝑅 ∘ (𝑅𝑟(𝑚 + 1))) = (𝑅 ∘ ((𝑅𝑟𝑚) ∘ 𝑅)))
4435, 40, 433eqtr4d 2695 . . . . . 6 (((𝑅𝑉𝑚 ∈ ℕ) ∧ (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚))) → (𝑅𝑟((𝑚 + 1) + 1)) = (𝑅 ∘ (𝑅𝑟(𝑚 + 1))))
4544ex 449 . . . . 5 ((𝑅𝑉𝑚 ∈ ℕ) → ((𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚)) → (𝑅𝑟((𝑚 + 1) + 1)) = (𝑅 ∘ (𝑅𝑟(𝑚 + 1)))))
4645expcom 450 . . . 4 (𝑚 ∈ ℕ → (𝑅𝑉 → ((𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚)) → (𝑅𝑟((𝑚 + 1) + 1)) = (𝑅 ∘ (𝑅𝑟(𝑚 + 1))))))
4746a2d 29 . . 3 (𝑚 ∈ ℕ → ((𝑅𝑉 → (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚))) → (𝑅𝑉 → (𝑅𝑟((𝑚 + 1) + 1)) = (𝑅 ∘ (𝑅𝑟(𝑚 + 1))))))
486, 12, 18, 24, 31, 47nnind 11076 . 2 (𝑁 ∈ ℕ → (𝑅𝑉 → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁))))
4948impcom 445 1 ((𝑅𝑉𝑁 ∈ ℕ) → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  ccom 5147  (class class class)co 6690  1c1 9975   + caddc 9977  cn 11058  𝑟crelexp 13804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-seq 12842  df-relexp 13805
This theorem is referenced by:  relexpsucl  13817  relexpcnv  13819  relexpaddnn  13835  trclfvcom  38332  trclimalb2  38335
  Copyright terms: Public domain W3C validator