![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > relinxp | Structured version Visualization version GIF version |
Description: Intersection with a Cartesian product is a relation. (Contributed by Peter Mazsa, 4-Mar-2019.) |
Ref | Expression |
---|---|
relinxp | ⊢ Rel (𝑅 ∩ (𝐴 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relxp 5281 | . 2 ⊢ Rel (𝐴 × 𝐵) | |
2 | relin2 5391 | . 2 ⊢ (Rel (𝐴 × 𝐵) → Rel (𝑅 ∩ (𝐴 × 𝐵))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ Rel (𝑅 ∩ (𝐴 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3712 × cxp 5262 Rel wrel 5269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-v 3340 df-in 3720 df-ss 3727 df-opab 4863 df-xp 5270 df-rel 5271 |
This theorem is referenced by: inxpss 34404 inxpss2 34407 iss2 34433 inxp2 34450 inxpxrn 34474 |
Copyright terms: Public domain | W3C validator |