MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reliun Structured version   Visualization version   GIF version

Theorem reliun 5148
Description: An indexed union is a relation iff each member of its indexed family is a relation. (Contributed by NM, 19-Dec-2008.)
Assertion
Ref Expression
reliun (Rel 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 Rel 𝐵)

Proof of Theorem reliun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-iun 4448 . . 3 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵}
21releqi 5112 . 2 (Rel 𝑥𝐴 𝐵 ↔ Rel {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵})
3 df-rel 5032 . 2 (Rel {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵} ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵} ⊆ (V × V))
4 abss 3630 . . 3 ({𝑦 ∣ ∃𝑥𝐴 𝑦𝐵} ⊆ (V × V) ↔ ∀𝑦(∃𝑥𝐴 𝑦𝐵𝑦 ∈ (V × V)))
5 df-rel 5032 . . . . . 6 (Rel 𝐵𝐵 ⊆ (V × V))
6 dfss2 3553 . . . . . 6 (𝐵 ⊆ (V × V) ↔ ∀𝑦(𝑦𝐵𝑦 ∈ (V × V)))
75, 6bitri 262 . . . . 5 (Rel 𝐵 ↔ ∀𝑦(𝑦𝐵𝑦 ∈ (V × V)))
87ralbii 2959 . . . 4 (∀𝑥𝐴 Rel 𝐵 ↔ ∀𝑥𝐴𝑦(𝑦𝐵𝑦 ∈ (V × V)))
9 ralcom4 3193 . . . 4 (∀𝑥𝐴𝑦(𝑦𝐵𝑦 ∈ (V × V)) ↔ ∀𝑦𝑥𝐴 (𝑦𝐵𝑦 ∈ (V × V)))
10 r19.23v 3001 . . . . 5 (∀𝑥𝐴 (𝑦𝐵𝑦 ∈ (V × V)) ↔ (∃𝑥𝐴 𝑦𝐵𝑦 ∈ (V × V)))
1110albii 1736 . . . 4 (∀𝑦𝑥𝐴 (𝑦𝐵𝑦 ∈ (V × V)) ↔ ∀𝑦(∃𝑥𝐴 𝑦𝐵𝑦 ∈ (V × V)))
128, 9, 113bitri 284 . . 3 (∀𝑥𝐴 Rel 𝐵 ↔ ∀𝑦(∃𝑥𝐴 𝑦𝐵𝑦 ∈ (V × V)))
134, 12bitr4i 265 . 2 ({𝑦 ∣ ∃𝑥𝐴 𝑦𝐵} ⊆ (V × V) ↔ ∀𝑥𝐴 Rel 𝐵)
142, 3, 133bitri 284 1 (Rel 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 Rel 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wal 1472  wcel 1976  {cab 2592  wral 2892  wrex 2893  Vcvv 3169  wss 3536   ciun 4446   × cxp 5023  Rel wrel 5030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ral 2897  df-rex 2898  df-v 3171  df-in 3543  df-ss 3550  df-iun 4448  df-rel 5032
This theorem is referenced by:  reluni  5150  eliunxp  5166  opeliunxp2  5167  dfco2  5534  coiun  5545  fvn0ssdmfun  6240  opeliunxp2f  7197  fsumcom2  14290  fsumcom2OLD  14291  fprodcom2  14496  fprodcom2OLD  14497  imasaddfnlem  15954  imasvscafn  15963  gsum2d2lem  18138  gsum2d2  18139  gsumcom2  18140  dprd2d2  18209  cnextrel  21616  reldv  23354  dfcnv2  28662  cvmliftlem1  30324  cnviun  36761  coiun1  36763  eliunxp2  41904
  Copyright terms: Public domain W3C validator