MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relogbcxpb Structured version   Visualization version   GIF version

Theorem relogbcxpb 25368
Description: The logarithm is the inverse of the exponentiation. Observation in [Cohen4] p. 348. (Contributed by AV, 11-Jun-2020.)
Assertion
Ref Expression
relogbcxpb (((𝐵 ∈ ℝ+𝐵 ≠ 1) ∧ 𝑋 ∈ ℝ+𝑌 ∈ ℝ) → ((𝐵 logb 𝑋) = 𝑌 ↔ (𝐵𝑐𝑌) = 𝑋))

Proof of Theorem relogbcxpb
StepHypRef Expression
1 oveq2 7167 . . . 4 (𝑌 = (𝐵 logb 𝑋) → (𝐵𝑐𝑌) = (𝐵𝑐(𝐵 logb 𝑋)))
21eqcoms 2832 . . 3 ((𝐵 logb 𝑋) = 𝑌 → (𝐵𝑐𝑌) = (𝐵𝑐(𝐵 logb 𝑋)))
3 rpcn 12402 . . . . . . . 8 (𝐵 ∈ ℝ+𝐵 ∈ ℂ)
43adantr 483 . . . . . . 7 ((𝐵 ∈ ℝ+𝐵 ≠ 1) → 𝐵 ∈ ℂ)
5 rpne0 12408 . . . . . . . 8 (𝐵 ∈ ℝ+𝐵 ≠ 0)
65adantr 483 . . . . . . 7 ((𝐵 ∈ ℝ+𝐵 ≠ 1) → 𝐵 ≠ 0)
7 simpr 487 . . . . . . 7 ((𝐵 ∈ ℝ+𝐵 ≠ 1) → 𝐵 ≠ 1)
8 eldifpr 4600 . . . . . . 7 (𝐵 ∈ (ℂ ∖ {0, 1}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1))
94, 6, 7, 8syl3anbrc 1339 . . . . . 6 ((𝐵 ∈ ℝ+𝐵 ≠ 1) → 𝐵 ∈ (ℂ ∖ {0, 1}))
10 rpcndif0 12411 . . . . . 6 (𝑋 ∈ ℝ+𝑋 ∈ (ℂ ∖ {0}))
119, 10anim12i 614 . . . . 5 (((𝐵 ∈ ℝ+𝐵 ≠ 1) ∧ 𝑋 ∈ ℝ+) → (𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})))
12113adant3 1128 . . . 4 (((𝐵 ∈ ℝ+𝐵 ≠ 1) ∧ 𝑋 ∈ ℝ+𝑌 ∈ ℝ) → (𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})))
13 cxplogb 25367 . . . 4 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵𝑐(𝐵 logb 𝑋)) = 𝑋)
1412, 13syl 17 . . 3 (((𝐵 ∈ ℝ+𝐵 ≠ 1) ∧ 𝑋 ∈ ℝ+𝑌 ∈ ℝ) → (𝐵𝑐(𝐵 logb 𝑋)) = 𝑋)
152, 14sylan9eqr 2881 . 2 ((((𝐵 ∈ ℝ+𝐵 ≠ 1) ∧ 𝑋 ∈ ℝ+𝑌 ∈ ℝ) ∧ (𝐵 logb 𝑋) = 𝑌) → (𝐵𝑐𝑌) = 𝑋)
16 oveq2 7167 . . . 4 (𝑋 = (𝐵𝑐𝑌) → (𝐵 logb 𝑋) = (𝐵 logb (𝐵𝑐𝑌)))
1716eqcoms 2832 . . 3 ((𝐵𝑐𝑌) = 𝑋 → (𝐵 logb 𝑋) = (𝐵 logb (𝐵𝑐𝑌)))
18 eldifsn 4722 . . . . . . 7 (𝐵 ∈ (ℝ+ ∖ {1}) ↔ (𝐵 ∈ ℝ+𝐵 ≠ 1))
1918biimpri 230 . . . . . 6 ((𝐵 ∈ ℝ+𝐵 ≠ 1) → 𝐵 ∈ (ℝ+ ∖ {1}))
2019anim1i 616 . . . . 5 (((𝐵 ∈ ℝ+𝐵 ≠ 1) ∧ 𝑌 ∈ ℝ) → (𝐵 ∈ (ℝ+ ∖ {1}) ∧ 𝑌 ∈ ℝ))
21203adant2 1127 . . . 4 (((𝐵 ∈ ℝ+𝐵 ≠ 1) ∧ 𝑋 ∈ ℝ+𝑌 ∈ ℝ) → (𝐵 ∈ (ℝ+ ∖ {1}) ∧ 𝑌 ∈ ℝ))
22 relogbcxp 25366 . . . 4 ((𝐵 ∈ (ℝ+ ∖ {1}) ∧ 𝑌 ∈ ℝ) → (𝐵 logb (𝐵𝑐𝑌)) = 𝑌)
2321, 22syl 17 . . 3 (((𝐵 ∈ ℝ+𝐵 ≠ 1) ∧ 𝑋 ∈ ℝ+𝑌 ∈ ℝ) → (𝐵 logb (𝐵𝑐𝑌)) = 𝑌)
2417, 23sylan9eqr 2881 . 2 ((((𝐵 ∈ ℝ+𝐵 ≠ 1) ∧ 𝑋 ∈ ℝ+𝑌 ∈ ℝ) ∧ (𝐵𝑐𝑌) = 𝑋) → (𝐵 logb 𝑋) = 𝑌)
2515, 24impbida 799 1 (((𝐵 ∈ ℝ+𝐵 ≠ 1) ∧ 𝑋 ∈ ℝ+𝑌 ∈ ℝ) → ((𝐵 logb 𝑋) = 𝑌 ↔ (𝐵𝑐𝑌) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wne 3019  cdif 3936  {csn 4570  {cpr 4572  (class class class)co 7159  cc 10538  cr 10539  0cc0 10540  1c1 10541  +crp 12392  𝑐ccxp 25142   logb clogb 25345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618  ax-addf 10619  ax-mulf 10620
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-fi 8878  df-sup 8909  df-inf 8910  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14429  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-limsup 14831  df-clim 14848  df-rlim 14849  df-sum 15046  df-ef 15424  df-sin 15426  df-cos 15427  df-pi 15429  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-starv 16583  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-unif 16591  df-hom 16592  df-cco 16593  df-rest 16699  df-topn 16700  df-0g 16718  df-gsum 16719  df-topgen 16720  df-pt 16721  df-prds 16724  df-xrs 16778  df-qtop 16783  df-imas 16784  df-xps 16786  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-mulg 18228  df-cntz 18450  df-cmn 18911  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-fbas 20545  df-fg 20546  df-cnfld 20549  df-top 21505  df-topon 21522  df-topsp 21544  df-bases 21557  df-cld 21630  df-ntr 21631  df-cls 21632  df-nei 21709  df-lp 21747  df-perf 21748  df-cn 21838  df-cnp 21839  df-haus 21926  df-tx 22173  df-hmeo 22366  df-fil 22457  df-fm 22549  df-flim 22550  df-flf 22551  df-xms 22933  df-ms 22934  df-tms 22935  df-cncf 23489  df-limc 24467  df-dv 24468  df-log 25143  df-cxp 25144  df-logb 25346
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator