MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relogbdiv Structured version   Visualization version   GIF version

Theorem relogbdiv 24230
Description: The logarithm of the quotient of two positive real numbers is the difference of logarithms. Property 3 of [Cohen4] p. 361. (Contributed by AV, 29-May-2020.)
Assertion
Ref Expression
relogbdiv ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵 logb (𝐴 / 𝐶)) = ((𝐵 logb 𝐴) − (𝐵 logb 𝐶)))

Proof of Theorem relogbdiv
StepHypRef Expression
1 neg1rr 10968 . . 3 -1 ∈ ℝ
2 relogbmulexp 24229 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+ ∧ -1 ∈ ℝ)) → (𝐵 logb (𝐴 · (𝐶𝑐-1))) = ((𝐵 logb 𝐴) + (-1 · (𝐵 logb 𝐶))))
31, 2mp3anr3 1414 . 2 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵 logb (𝐴 · (𝐶𝑐-1))) = ((𝐵 logb 𝐴) + (-1 · (𝐵 logb 𝐶))))
4 rpcn 11669 . . . . . . 7 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
54adantr 479 . . . . . 6 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐴 ∈ ℂ)
6 rpcn 11669 . . . . . . 7 (𝐶 ∈ ℝ+𝐶 ∈ ℂ)
76adantl 480 . . . . . 6 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐶 ∈ ℂ)
8 rpne0 11676 . . . . . . 7 (𝐶 ∈ ℝ+𝐶 ≠ 0)
98adantl 480 . . . . . 6 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐶 ≠ 0)
105, 7, 9divrecd 10649 . . . . 5 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐴 / 𝐶) = (𝐴 · (1 / 𝐶)))
11 1cnd 9908 . . . . . . . . 9 (𝐶 ∈ ℝ+ → 1 ∈ ℂ)
126, 8, 11cxpnegd 24174 . . . . . . . 8 (𝐶 ∈ ℝ+ → (𝐶𝑐-1) = (1 / (𝐶𝑐1)))
136cxp1d 24165 . . . . . . . . 9 (𝐶 ∈ ℝ+ → (𝐶𝑐1) = 𝐶)
1413oveq2d 6539 . . . . . . . 8 (𝐶 ∈ ℝ+ → (1 / (𝐶𝑐1)) = (1 / 𝐶))
1512, 14eqtrd 2639 . . . . . . 7 (𝐶 ∈ ℝ+ → (𝐶𝑐-1) = (1 / 𝐶))
1615adantl 480 . . . . . 6 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐶𝑐-1) = (1 / 𝐶))
1716oveq2d 6539 . . . . 5 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐴 · (𝐶𝑐-1)) = (𝐴 · (1 / 𝐶)))
1810, 17eqtr4d 2642 . . . 4 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐴 / 𝐶) = (𝐴 · (𝐶𝑐-1)))
1918adantl 480 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐴 / 𝐶) = (𝐴 · (𝐶𝑐-1)))
2019oveq2d 6539 . 2 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵 logb (𝐴 / 𝐶)) = (𝐵 logb (𝐴 · (𝐶𝑐-1))))
21 rpcndif0 11679 . . . . . 6 (𝐶 ∈ ℝ+𝐶 ∈ (ℂ ∖ {0}))
2221adantl 480 . . . . 5 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐶 ∈ (ℂ ∖ {0}))
23 logbcl 24218 . . . . 5 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ (ℂ ∖ {0})) → (𝐵 logb 𝐶) ∈ ℂ)
2422, 23sylan2 489 . . . 4 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵 logb 𝐶) ∈ ℂ)
25 mulm1 10318 . . . . 5 ((𝐵 logb 𝐶) ∈ ℂ → (-1 · (𝐵 logb 𝐶)) = -(𝐵 logb 𝐶))
2625oveq2d 6539 . . . 4 ((𝐵 logb 𝐶) ∈ ℂ → ((𝐵 logb 𝐴) + (-1 · (𝐵 logb 𝐶))) = ((𝐵 logb 𝐴) + -(𝐵 logb 𝐶)))
2724, 26syl 17 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → ((𝐵 logb 𝐴) + (-1 · (𝐵 logb 𝐶))) = ((𝐵 logb 𝐴) + -(𝐵 logb 𝐶)))
28 rpcndif0 11679 . . . . . 6 (𝐴 ∈ ℝ+𝐴 ∈ (ℂ ∖ {0}))
2928adantr 479 . . . . 5 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐴 ∈ (ℂ ∖ {0}))
30 logbcl 24218 . . . . 5 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐴 ∈ (ℂ ∖ {0})) → (𝐵 logb 𝐴) ∈ ℂ)
3129, 30sylan2 489 . . . 4 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵 logb 𝐴) ∈ ℂ)
3231, 24negsubd 10245 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → ((𝐵 logb 𝐴) + -(𝐵 logb 𝐶)) = ((𝐵 logb 𝐴) − (𝐵 logb 𝐶)))
3327, 32eqtr2d 2640 . 2 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → ((𝐵 logb 𝐴) − (𝐵 logb 𝐶)) = ((𝐵 logb 𝐴) + (-1 · (𝐵 logb 𝐶))))
343, 20, 333eqtr4d 2649 1 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵 logb (𝐴 / 𝐶)) = ((𝐵 logb 𝐴) − (𝐵 logb 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1975  wne 2775  cdif 3532  {csn 4120  {cpr 4122  (class class class)co 6523  cc 9786  cr 9787  0cc0 9788  1c1 9789   + caddc 9791   · cmul 9793  cmin 10113  -cneg 10114   / cdiv 10529  +crp 11660  𝑐ccxp 24019   logb clogb 24215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-inf2 8394  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865  ax-pre-sup 9866  ax-addf 9867  ax-mulf 9868
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-int 4401  df-iun 4447  df-iin 4448  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-se 4984  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-isom 5795  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-of 6768  df-om 6931  df-1st 7032  df-2nd 7033  df-supp 7156  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-1o 7420  df-2o 7421  df-oadd 7424  df-er 7602  df-map 7719  df-pm 7720  df-ixp 7768  df-en 7815  df-dom 7816  df-sdom 7817  df-fin 7818  df-fsupp 8132  df-fi 8173  df-sup 8204  df-inf 8205  df-oi 8271  df-card 8621  df-cda 8846  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-div 10530  df-nn 10864  df-2 10922  df-3 10923  df-4 10924  df-5 10925  df-6 10926  df-7 10927  df-8 10928  df-9 10929  df-n0 11136  df-z 11207  df-dec 11322  df-uz 11516  df-q 11617  df-rp 11661  df-xneg 11774  df-xadd 11775  df-xmul 11776  df-ioo 12002  df-ioc 12003  df-ico 12004  df-icc 12005  df-fz 12149  df-fzo 12286  df-fl 12406  df-mod 12482  df-seq 12615  df-exp 12674  df-fac 12874  df-bc 12903  df-hash 12931  df-shft 13597  df-cj 13629  df-re 13630  df-im 13631  df-sqrt 13765  df-abs 13766  df-limsup 13992  df-clim 14009  df-rlim 14010  df-sum 14207  df-ef 14579  df-sin 14581  df-cos 14582  df-pi 14584  df-struct 15639  df-ndx 15640  df-slot 15641  df-base 15642  df-sets 15643  df-ress 15644  df-plusg 15723  df-mulr 15724  df-starv 15725  df-sca 15726  df-vsca 15727  df-ip 15728  df-tset 15729  df-ple 15730  df-ds 15733  df-unif 15734  df-hom 15735  df-cco 15736  df-rest 15848  df-topn 15849  df-0g 15867  df-gsum 15868  df-topgen 15869  df-pt 15870  df-prds 15873  df-xrs 15927  df-qtop 15932  df-imas 15933  df-xps 15935  df-mre 16011  df-mrc 16012  df-acs 16014  df-mgm 17007  df-sgrp 17049  df-mnd 17060  df-submnd 17101  df-mulg 17306  df-cntz 17515  df-cmn 17960  df-psmet 19501  df-xmet 19502  df-met 19503  df-bl 19504  df-mopn 19505  df-fbas 19506  df-fg 19507  df-cnfld 19510  df-top 20459  df-bases 20460  df-topon 20461  df-topsp 20462  df-cld 20571  df-ntr 20572  df-cls 20573  df-nei 20650  df-lp 20688  df-perf 20689  df-cn 20779  df-cnp 20780  df-haus 20867  df-tx 21113  df-hmeo 21306  df-fil 21398  df-fm 21490  df-flim 21491  df-flf 21492  df-xms 21872  df-ms 21873  df-tms 21874  df-cncf 22416  df-limc 23349  df-dv 23350  df-log 24020  df-cxp 24021  df-logb 24216
This theorem is referenced by:  relogbdivb  42152
  Copyright terms: Public domain W3C validator