![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relopab | Structured version Visualization version GIF version |
Description: A class of ordered pairs is a relation. (Contributed by NM, 8-Mar-1995.) Removed DV restrictions. (Revised by Alan Sare, 9-Jul-2013.) (Proof shortened by Mario Carneiro, 21-Dec-2013.) |
Ref | Expression |
---|---|
relopab | ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2651 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
2 | 1 | relopabi 5278 | 1 ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: {copab 4745 Rel wrel 5148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-opab 4746 df-xp 5149 df-rel 5150 |
This theorem is referenced by: opabid2 5284 inopab 5285 difopab 5286 dfres2 5488 cnvopab 5568 funopab 5961 relmptopab 6925 elopabi 7276 relmpt2opab 7304 shftfn 13857 cicer 16513 joindmss 17054 meetdmss 17068 lgsquadlem3 25152 perpln1 25650 perpln2 25651 fpwrelmapffslem 29635 fpwrelmap 29636 relfae 30438 vvdifopab 34165 inxprnres 34201 prtlem12 34471 dicvalrelN 36791 diclspsn 36800 dih1dimatlem 36935 rfovcnvf1od 38615 |
Copyright terms: Public domain | W3C validator |