MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relsdom Structured version   Visualization version   GIF version

Theorem relsdom 8519
Description: Strict dominance is a relation. (Contributed by NM, 31-Mar-1998.)
Assertion
Ref Expression
relsdom Rel ≺

Proof of Theorem relsdom
StepHypRef Expression
1 reldom 8518 . 2 Rel ≼
2 reldif 5691 . . 3 (Rel ≼ → Rel ( ≼ ∖ ≈ ))
3 df-sdom 8515 . . . 4 ≺ = ( ≼ ∖ ≈ )
43releqi 5655 . . 3 (Rel ≺ ↔ Rel ( ≼ ∖ ≈ ))
52, 4sylibr 236 . 2 (Rel ≼ → Rel ≺ )
61, 5ax-mp 5 1 Rel ≺
Colors of variables: wff setvar class
Syntax hints:  cdif 3936  Rel wrel 5563  cen 8509  cdom 8510  csdm 8511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-rab 3150  df-v 3499  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-opab 5132  df-xp 5564  df-rel 5565  df-dom 8514  df-sdom 8515
This theorem is referenced by:  domdifsn  8603  sdom0  8652  sdomirr  8657  sdomdif  8668  sucdom2  8717  sdom1  8721  unxpdom  8728  unxpdom2  8729  sucxpdom  8730  isfinite2  8779  fin2inf  8784  card2on  9021  djuxpdom  9614  djufi  9615  infdif  9634  cfslb2n  9693  isfin5  9724  isfin6  9725  isfin4p1  9740  fin56  9818  fin67  9820  sdomsdomcard  9985  gchi  10049  canthp1lem1  10077  canthp1lem2  10078  canthp1  10079  frgpnabl  18998  fphpd  39419
  Copyright terms: Public domain W3C validator