MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relsn2 Structured version   Visualization version   GIF version

Theorem relsn2 6064
Description: A singleton is a relation iff it has a nonempty domain. (Contributed by NM, 25-Sep-2013.) Make hypothesis an antecedent. (Revised by BJ, 12-Feb-2022.)
Assertion
Ref Expression
relsn2 (𝐴𝑉 → (Rel {𝐴} ↔ dom {𝐴} ≠ ∅))

Proof of Theorem relsn2
StepHypRef Expression
1 relsng 5669 . 2 (𝐴𝑉 → (Rel {𝐴} ↔ 𝐴 ∈ (V × V)))
2 dmsnn0 6059 . 2 (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅)
31, 2syl6bb 289 1 (𝐴𝑉 → (Rel {𝐴} ↔ dom {𝐴} ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wcel 2110  wne 3016  Vcvv 3495  c0 4291  {csn 4561   × cxp 5548  dom cdm 5550  Rel wrel 5555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pr 5322
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-rab 3147  df-v 3497  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4562  df-pr 4564  df-op 4568  df-br 5060  df-opab 5122  df-xp 5556  df-rel 5557  df-dm 5560
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator