![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relsn2OLD | Structured version Visualization version GIF version |
Description: Obsolete version of relsn2 5763 as of 12-Feb-2022. (Contributed by NM, 25-Sep-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
relsn2OLD.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
relsn2OLD | ⊢ (Rel {𝐴} ↔ dom {𝐴} ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsn2OLD.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | relsn 5382 | . 2 ⊢ (Rel {𝐴} ↔ 𝐴 ∈ (V × V)) |
3 | dmsnn0 5758 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅) | |
4 | 2, 3 | bitri 264 | 1 ⊢ (Rel {𝐴} ↔ dom {𝐴} ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∈ wcel 2139 ≠ wne 2932 Vcvv 3340 ∅c0 4058 {csn 4321 × cxp 5264 dom cdm 5266 Rel wrel 5271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-opab 4865 df-xp 5272 df-rel 5273 df-dm 5276 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |