Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  relssdmrn Structured version   Visualization version   GIF version

Theorem relssdmrn 5620
 Description: A relation is included in the Cartesian product of its domain and range. Exercise 4.12(t) of [Mendelson] p. 235. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
relssdmrn (Rel 𝐴𝐴 ⊆ (dom 𝐴 × ran 𝐴))

Proof of Theorem relssdmrn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . 2 (Rel 𝐴 → Rel 𝐴)
2 19.8a 2049 . . . 4 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴)
3 19.8a 2049 . . . 4 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴)
4 opelxp 5111 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ (dom 𝐴 × ran 𝐴) ↔ (𝑥 ∈ dom 𝐴𝑦 ∈ ran 𝐴))
5 vex 3192 . . . . . . 7 𝑥 ∈ V
65eldm2 5287 . . . . . 6 (𝑥 ∈ dom 𝐴 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴)
7 vex 3192 . . . . . . 7 𝑦 ∈ V
87elrn2 5330 . . . . . 6 (𝑦 ∈ ran 𝐴 ↔ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴)
96, 8anbi12i 732 . . . . 5 ((𝑥 ∈ dom 𝐴𝑦 ∈ ran 𝐴) ↔ (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴 ∧ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴))
104, 9bitri 264 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (dom 𝐴 × ran 𝐴) ↔ (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴 ∧ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴))
112, 3, 10sylanbrc 697 . . 3 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ (dom 𝐴 × ran 𝐴))
1211a1i 11 . 2 (Rel 𝐴 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ (dom 𝐴 × ran 𝐴)))
131, 12relssdv 5178 1 (Rel 𝐴𝐴 ⊆ (dom 𝐴 × ran 𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384  ∃wex 1701   ∈ wcel 1987   ⊆ wss 3559  ⟨cop 4159   × cxp 5077  dom cdm 5079  ran crn 5080  Rel wrel 5084 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pr 4872 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-br 4619  df-opab 4679  df-xp 5085  df-rel 5086  df-cnv 5087  df-dm 5089  df-rn 5090 This theorem is referenced by:  cnvssrndm  5621  cossxp  5622  relrelss  5623  relfld  5625  fssxp  6022  oprabss  6706  cnvexg  7066  resfunexgALT  7083  cofunexg  7084  fnexALT  7086  erssxp  7717  wunco  9506  trclublem  13675  trclubi  13676  trclubiOLD  13677  trclub  13680  reltrclfv  13699  imasless  16128  sylow2a  17962  gsum2d  18299  znleval  19831  tsmsxp  21877  relfi  29278  idssxp  29291  fcnvgreu  29333  rtrclex  37432  trclubNEW  37434  rtrclexi  37436  trrelsuperreldg  37468  trrelsuperrel2dg  37471  rp-imass  37574  idhe  37590
 Copyright terms: Public domain W3C validator