Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  relssi Structured version   Visualization version   GIF version

Theorem relssi 5245
 Description: Inference from subclass principle for relations. (Contributed by NM, 31-Mar-1998.)
Hypotheses
Ref Expression
relssi.1 Rel 𝐴
relssi.2 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)
Assertion
Ref Expression
relssi 𝐴𝐵
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem relssi
StepHypRef Expression
1 relssi.1 . . 3 Rel 𝐴
2 ssrel 5241 . . 3 (Rel 𝐴 → (𝐴𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
31, 2ax-mp 5 . 2 (𝐴𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵))
4 relssi.2 . . 3 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)
54ax-gen 1762 . 2 𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)
63, 5mpgbir 1766 1 𝐴𝐵
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196  ∀wal 1521   ∈ wcel 2030   ⊆ wss 3607  ⟨cop 4216  Rel wrel 5148 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-in 3614  df-ss 3621  df-opab 4746  df-xp 5149  df-rel 5150 This theorem is referenced by:  xpsspw  5266  oprssdm  6857  resiexg  7144  dftpos4  7416  enssdom  8022  idssen  8042  txuni2  21416  txpss3v  32110  pprodss4v  32116  xrnss3v  34274  aoprssdm  41603
 Copyright terms: Public domain W3C validator