![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relssi | Structured version Visualization version GIF version |
Description: Inference from subclass principle for relations. (Contributed by NM, 31-Mar-1998.) |
Ref | Expression |
---|---|
relssi.1 | ⊢ Rel 𝐴 |
relssi.2 | ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵) |
Ref | Expression |
---|---|
relssi | ⊢ 𝐴 ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relssi.1 | . . 3 ⊢ Rel 𝐴 | |
2 | ssrel 5241 | . . 3 ⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) |
4 | relssi.2 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵) | |
5 | 4 | ax-gen 1762 | . 2 ⊢ ∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵) |
6 | 3, 5 | mpgbir 1766 | 1 ⊢ 𝐴 ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∀wal 1521 ∈ wcel 2030 ⊆ wss 3607 〈cop 4216 Rel wrel 5148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-in 3614 df-ss 3621 df-opab 4746 df-xp 5149 df-rel 5150 |
This theorem is referenced by: xpsspw 5266 oprssdm 6857 resiexg 7144 dftpos4 7416 enssdom 8022 idssen 8042 txuni2 21416 txpss3v 32110 pprodss4v 32116 xrnss3v 34274 aoprssdm 41603 |
Copyright terms: Public domain | W3C validator |