Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  relssres Structured version   Visualization version   GIF version

Theorem relssres 5401
 Description: Simplification law for restriction. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
relssres ((Rel 𝐴 ∧ dom 𝐴𝐵) → (𝐴𝐵) = 𝐴)

Proof of Theorem relssres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . 4 ((Rel 𝐴 ∧ dom 𝐴𝐵) → Rel 𝐴)
2 vex 3192 . . . . . . . . 9 𝑥 ∈ V
3 vex 3192 . . . . . . . . 9 𝑦 ∈ V
42, 3opeldm 5293 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 ∈ dom 𝐴)
5 ssel 3581 . . . . . . . 8 (dom 𝐴𝐵 → (𝑥 ∈ dom 𝐴𝑥𝐵))
64, 5syl5 34 . . . . . . 7 (dom 𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥𝐵))
76ancld 575 . . . . . 6 (dom 𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥𝐵)))
83opelres 5366 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥𝐵))
97, 8syl6ibr 242 . . . . 5 (dom 𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵)))
109adantl 482 . . . 4 ((Rel 𝐴 ∧ dom 𝐴𝐵) → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵)))
111, 10relssdv 5178 . . 3 ((Rel 𝐴 ∧ dom 𝐴𝐵) → 𝐴 ⊆ (𝐴𝐵))
12 resss 5386 . . 3 (𝐴𝐵) ⊆ 𝐴
1311, 12jctil 559 . 2 ((Rel 𝐴 ∧ dom 𝐴𝐵) → ((𝐴𝐵) ⊆ 𝐴𝐴 ⊆ (𝐴𝐵)))
14 eqss 3602 . 2 ((𝐴𝐵) = 𝐴 ↔ ((𝐴𝐵) ⊆ 𝐴𝐴 ⊆ (𝐴𝐵)))
1513, 14sylibr 224 1 ((Rel 𝐴 ∧ dom 𝐴𝐵) → (𝐴𝐵) = 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ⊆ wss 3559  ⟨cop 4159  dom cdm 5079   ↾ cres 5081  Rel wrel 5084 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pr 4872 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-br 4619  df-opab 4679  df-xp 5085  df-rel 5086  df-dm 5089  df-res 5091 This theorem is referenced by:  resdm  5405  resid  5424  fnresdm  5963  f1ompt  6343  tfr2b  7444  tz7.48-2  7489  omxpenlem  8013  rankwflemb  8608  zorn2lem4  9273  relexpaddg  13735  setscom  15835  setsid  15846  dprd2da  18373  dprd2db  18374  ustssco  21941  dvres3  23600  dvres3a  23601  rlimcnp2  24610  ex-res  27169  poimirlem3  33079  relexpaddss  37526  fnresdmss  38853  limsupresuz  39367
 Copyright terms: Public domain W3C validator