Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  reltxrnmnf Structured version   Visualization version   GIF version

Theorem reltxrnmnf 12210
 Description: For all extended real numbers not being minus infinity there is a smaller real number. (Contributed by AV, 5-Sep-2020.)
Assertion
Ref Expression
reltxrnmnf 𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥)
Distinct variable group:   𝑥,𝑦

Proof of Theorem reltxrnmnf
StepHypRef Expression
1 elxr 11988 . . 3 (𝑥 ∈ ℝ* ↔ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞))
2 reltre 12208 . . . . . 6 𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑦 < 𝑥
32rspec 2960 . . . . 5 (𝑥 ∈ ℝ → ∃𝑦 ∈ ℝ 𝑦 < 𝑥)
43a1d 25 . . . 4 (𝑥 ∈ ℝ → (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥))
5 0red 10079 . . . . . 6 (𝑥 = +∞ → 0 ∈ ℝ)
6 breq1 4688 . . . . . . 7 (𝑦 = 0 → (𝑦 < 𝑥 ↔ 0 < 𝑥))
76adantl 481 . . . . . 6 ((𝑥 = +∞ ∧ 𝑦 = 0) → (𝑦 < 𝑥 ↔ 0 < 𝑥))
8 0ltpnf 11994 . . . . . . 7 0 < +∞
9 breq2 4689 . . . . . . 7 (𝑥 = +∞ → (0 < 𝑥 ↔ 0 < +∞))
108, 9mpbiri 248 . . . . . 6 (𝑥 = +∞ → 0 < 𝑥)
115, 7, 10rspcedvd 3348 . . . . 5 (𝑥 = +∞ → ∃𝑦 ∈ ℝ 𝑦 < 𝑥)
1211a1d 25 . . . 4 (𝑥 = +∞ → (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥))
13 breq2 4689 . . . . 5 (𝑥 = -∞ → (-∞ < 𝑥 ↔ -∞ < -∞))
14 mnfxr 10134 . . . . . 6 -∞ ∈ ℝ*
15 nltmnf 12001 . . . . . . 7 (-∞ ∈ ℝ* → ¬ -∞ < -∞)
1615pm2.21d 118 . . . . . 6 (-∞ ∈ ℝ* → (-∞ < -∞ → ∃𝑦 ∈ ℝ 𝑦 < 𝑥))
1714, 16ax-mp 5 . . . . 5 (-∞ < -∞ → ∃𝑦 ∈ ℝ 𝑦 < 𝑥)
1813, 17syl6bi 243 . . . 4 (𝑥 = -∞ → (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥))
194, 12, 183jaoi 1431 . . 3 ((𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞) → (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥))
201, 19sylbi 207 . 2 (𝑥 ∈ ℝ* → (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥))
2120rgen 2951 1 𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∨ w3o 1053   = wceq 1523   ∈ wcel 2030  ∀wral 2941  ∃wrex 2942   class class class wbr 4685  ℝcr 9973  0cc0 9974  +∞cpnf 10109  -∞cmnf 10110  ℝ*cxr 10111   < clt 10112 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307 This theorem is referenced by:  infmremnf  12211
 Copyright terms: Public domain W3C validator