MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  remim Structured version   Visualization version   GIF version

Theorem remim 13807
Description: Value of the conjugate of a complex number. The value is the real part minus i times the imaginary part. Definition 10-3.2 of [Gleason] p. 132. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
remim (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))

Proof of Theorem remim
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cjval 13792 . 2 (𝐴 ∈ ℂ → (∗‘𝐴) = (𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)))
2 replim 13806 . . . . . 6 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
32oveq1d 6630 . . . . 5 (𝐴 ∈ ℂ → (𝐴 + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) = (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))))
4 recl 13800 . . . . . . 7 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
54recnd 10028 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
6 ax-icn 9955 . . . . . . 7 i ∈ ℂ
7 imcl 13801 . . . . . . . 8 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
87recnd 10028 . . . . . . 7 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
9 mulcl 9980 . . . . . . 7 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
106, 8, 9sylancr 694 . . . . . 6 (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ)
115, 10, 5ppncand 10392 . . . . 5 (𝐴 ∈ ℂ → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) = ((ℜ‘𝐴) + (ℜ‘𝐴)))
123, 11eqtrd 2655 . . . 4 (𝐴 ∈ ℂ → (𝐴 + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) = ((ℜ‘𝐴) + (ℜ‘𝐴)))
134, 4readdcld 10029 . . . 4 (𝐴 ∈ ℂ → ((ℜ‘𝐴) + (ℜ‘𝐴)) ∈ ℝ)
1412, 13eqeltrd 2698 . . 3 (𝐴 ∈ ℂ → (𝐴 + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) ∈ ℝ)
155, 10, 10pnncand 10391 . . . . . . 7 (𝐴 ∈ ℂ → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) − ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) = ((i · (ℑ‘𝐴)) + (i · (ℑ‘𝐴))))
162oveq1d 6630 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) = (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) − ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))))
176a1i 11 . . . . . . . 8 (𝐴 ∈ ℂ → i ∈ ℂ)
1817, 8, 8adddid 10024 . . . . . . 7 (𝐴 ∈ ℂ → (i · ((ℑ‘𝐴) + (ℑ‘𝐴))) = ((i · (ℑ‘𝐴)) + (i · (ℑ‘𝐴))))
1915, 16, 183eqtr4d 2665 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) = (i · ((ℑ‘𝐴) + (ℑ‘𝐴))))
2019oveq2d 6631 . . . . 5 (𝐴 ∈ ℂ → (i · (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))) = (i · (i · ((ℑ‘𝐴) + (ℑ‘𝐴)))))
217, 7readdcld 10029 . . . . . . 7 (𝐴 ∈ ℂ → ((ℑ‘𝐴) + (ℑ‘𝐴)) ∈ ℝ)
2221recnd 10028 . . . . . 6 (𝐴 ∈ ℂ → ((ℑ‘𝐴) + (ℑ‘𝐴)) ∈ ℂ)
23 mulass 9984 . . . . . . 7 ((i ∈ ℂ ∧ i ∈ ℂ ∧ ((ℑ‘𝐴) + (ℑ‘𝐴)) ∈ ℂ) → ((i · i) · ((ℑ‘𝐴) + (ℑ‘𝐴))) = (i · (i · ((ℑ‘𝐴) + (ℑ‘𝐴)))))
246, 6, 23mp3an12 1411 . . . . . 6 (((ℑ‘𝐴) + (ℑ‘𝐴)) ∈ ℂ → ((i · i) · ((ℑ‘𝐴) + (ℑ‘𝐴))) = (i · (i · ((ℑ‘𝐴) + (ℑ‘𝐴)))))
2522, 24syl 17 . . . . 5 (𝐴 ∈ ℂ → ((i · i) · ((ℑ‘𝐴) + (ℑ‘𝐴))) = (i · (i · ((ℑ‘𝐴) + (ℑ‘𝐴)))))
2620, 25eqtr4d 2658 . . . 4 (𝐴 ∈ ℂ → (i · (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))) = ((i · i) · ((ℑ‘𝐴) + (ℑ‘𝐴))))
27 ixi 10616 . . . . . 6 (i · i) = -1
28 neg1rr 11085 . . . . . 6 -1 ∈ ℝ
2927, 28eqeltri 2694 . . . . 5 (i · i) ∈ ℝ
30 remulcl 9981 . . . . 5 (((i · i) ∈ ℝ ∧ ((ℑ‘𝐴) + (ℑ‘𝐴)) ∈ ℝ) → ((i · i) · ((ℑ‘𝐴) + (ℑ‘𝐴))) ∈ ℝ)
3129, 21, 30sylancr 694 . . . 4 (𝐴 ∈ ℂ → ((i · i) · ((ℑ‘𝐴) + (ℑ‘𝐴))) ∈ ℝ)
3226, 31eqeltrd 2698 . . 3 (𝐴 ∈ ℂ → (i · (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))) ∈ ℝ)
335, 10subcld 10352 . . . 4 (𝐴 ∈ ℂ → ((ℜ‘𝐴) − (i · (ℑ‘𝐴))) ∈ ℂ)
34 cju 10976 . . . 4 (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ))
35 oveq2 6623 . . . . . . 7 (𝑥 = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))) → (𝐴 + 𝑥) = (𝐴 + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))))
3635eleq1d 2683 . . . . . 6 (𝑥 = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))) → ((𝐴 + 𝑥) ∈ ℝ ↔ (𝐴 + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) ∈ ℝ))
37 oveq2 6623 . . . . . . . 8 (𝑥 = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))) → (𝐴𝑥) = (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))))
3837oveq2d 6631 . . . . . . 7 (𝑥 = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))) → (i · (𝐴𝑥)) = (i · (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))))
3938eleq1d 2683 . . . . . 6 (𝑥 = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))) → ((i · (𝐴𝑥)) ∈ ℝ ↔ (i · (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))) ∈ ℝ))
4036, 39anbi12d 746 . . . . 5 (𝑥 = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))) → (((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ↔ ((𝐴 + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) ∈ ℝ ∧ (i · (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))) ∈ ℝ)))
4140riota2 6598 . . . 4 ((((ℜ‘𝐴) − (i · (ℑ‘𝐴))) ∈ ℂ ∧ ∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)) → (((𝐴 + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) ∈ ℝ ∧ (i · (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))) ∈ ℝ) ↔ (𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))))
4233, 34, 41syl2anc 692 . . 3 (𝐴 ∈ ℂ → (((𝐴 + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) ∈ ℝ ∧ (i · (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))) ∈ ℝ) ↔ (𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))))
4314, 32, 42mpbi2and 955 . 2 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
441, 43eqtrd 2655 1 (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  ∃!wreu 2910  cfv 5857  crio 6575  (class class class)co 6615  cc 9894  cr 9895  1c1 9897  ici 9898   + caddc 9899   · cmul 9901  cmin 10226  -cneg 10227  ccj 13786  cre 13787  cim 13788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-po 5005  df-so 5006  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-2 11039  df-cj 13789  df-re 13790  df-im 13791
This theorem is referenced by:  cjreb  13813  recj  13814  remullem  13818  imcj  13822  cjadd  13831  cjneg  13837  imval2  13841  cji  13849  remimd  13888
  Copyright terms: Public domain W3C validator