MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  remul2 Structured version   Visualization version   GIF version

Theorem remul2 13851
Description: Real part of a product. (Contributed by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
remul2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · 𝐵)) = (𝐴 · (ℜ‘𝐵)))

Proof of Theorem remul2
StepHypRef Expression
1 recn 10011 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 remul 13850 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))))
31, 2sylan 488 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))))
4 rere 13843 . . . . 5 (𝐴 ∈ ℝ → (ℜ‘𝐴) = 𝐴)
54adantr 481 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐴) = 𝐴)
65oveq1d 6650 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · (ℜ‘𝐵)) = (𝐴 · (ℜ‘𝐵)))
7 reim0 13839 . . . . 5 (𝐴 ∈ ℝ → (ℑ‘𝐴) = 0)
87oveq1d 6650 . . . 4 (𝐴 ∈ ℝ → ((ℑ‘𝐴) · (ℑ‘𝐵)) = (0 · (ℑ‘𝐵)))
9 imcl 13832 . . . . . 6 (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℝ)
109recnd 10053 . . . . 5 (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℂ)
1110mul02d 10219 . . . 4 (𝐵 ∈ ℂ → (0 · (ℑ‘𝐵)) = 0)
128, 11sylan9eq 2674 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) · (ℑ‘𝐵)) = 0)
136, 12oveq12d 6653 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) = ((𝐴 · (ℜ‘𝐵)) − 0))
14 recl 13831 . . . . 5 (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℝ)
1514recnd 10053 . . . 4 (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℂ)
16 mulcl 10005 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐵) ∈ ℂ) → (𝐴 · (ℜ‘𝐵)) ∈ ℂ)
171, 15, 16syl2an 494 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (𝐴 · (ℜ‘𝐵)) ∈ ℂ)
1817subid1d 10366 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (ℜ‘𝐵)) − 0) = (𝐴 · (ℜ‘𝐵)))
193, 13, 183eqtrd 2658 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · 𝐵)) = (𝐴 · (ℜ‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1481  wcel 1988  cfv 5876  (class class class)co 6635  cc 9919  cr 9920  0cc0 9921   · cmul 9926  cmin 10251  cre 13818  cim 13819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-po 5025  df-so 5026  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-2 11064  df-cj 13820  df-re 13821  df-im 13822
This theorem is referenced by:  rediv  13852  remul2d  13948  abscxp  24419  asinsin  24600
  Copyright terms: Public domain W3C validator