![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ren0 | Structured version Visualization version GIF version |
Description: The set of reals is nonempty. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
ren0 | ⊢ ℝ ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10228 | . 2 ⊢ 0 ∈ ℝ | |
2 | 1 | ne0ii 4062 | 1 ⊢ ℝ ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2928 ∅c0 4054 ℝcr 10123 0cc0 10124 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-1cn 10182 ax-icn 10183 ax-addcl 10184 ax-addrcl 10185 ax-mulcl 10186 ax-mulrcl 10187 ax-i2m1 10192 ax-1ne0 10193 ax-rnegex 10195 ax-rrecex 10196 ax-cnre 10197 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ne 2929 df-ral 3051 df-rex 3052 df-rab 3055 df-v 3338 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-nul 4055 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4585 df-br 4801 df-iota 6008 df-fv 6053 df-ov 6812 |
This theorem is referenced by: limsup0 40425 limsuppnfdlem 40432 limsup10ex 40504 liminf10ex 40505 |
Copyright terms: Public domain | W3C validator |