Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rencldnfilem Structured version   Visualization version   GIF version

Theorem rencldnfilem 36268
Description: Lemma for rencldnfi 36269. (Contributed by Stefan O'Rear, 18-Oct-2014.)
Assertion
Ref Expression
rencldnfilem (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ ∀𝑥 ∈ ℝ+𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥) → ¬ 𝐴 ∈ Fin)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem rencldnfilem
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2518 . . . . . . . . . . . . 13 (𝑎 = 𝑐 → (𝑎 = (abs‘(𝑏𝐵)) ↔ 𝑐 = (abs‘(𝑏𝐵))))
21rexbidv 2938 . . . . . . . . . . . 12 (𝑎 = 𝑐 → (∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵)) ↔ ∃𝑏𝐴 𝑐 = (abs‘(𝑏𝐵))))
32elrab 3235 . . . . . . . . . . 11 (𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ↔ (𝑐 ∈ ℝ ∧ ∃𝑏𝐴 𝑐 = (abs‘(𝑏𝐵))))
4 simp-4l 801 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → 𝐴 ⊆ ℝ)
5 simpr 475 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → 𝑏𝐴)
64, 5sseldd 3473 . . . . . . . . . . . . . . . . 17 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → 𝑏 ∈ ℝ)
76recnd 9821 . . . . . . . . . . . . . . . 16 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → 𝑏 ∈ ℂ)
8 simp-4r 802 . . . . . . . . . . . . . . . . 17 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → 𝐵 ∈ ℝ)
98recnd 9821 . . . . . . . . . . . . . . . 16 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → 𝐵 ∈ ℂ)
107, 9subcld 10141 . . . . . . . . . . . . . . 15 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → (𝑏𝐵) ∈ ℂ)
11 simprr 791 . . . . . . . . . . . . . . . . . 18 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) → ¬ 𝐵𝐴)
1211ad2antrr 757 . . . . . . . . . . . . . . . . 17 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → ¬ 𝐵𝐴)
13 nelneq 2616 . . . . . . . . . . . . . . . . 17 ((𝑏𝐴 ∧ ¬ 𝐵𝐴) → ¬ 𝑏 = 𝐵)
145, 12, 13syl2anc 690 . . . . . . . . . . . . . . . 16 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → ¬ 𝑏 = 𝐵)
15 subeq0 10056 . . . . . . . . . . . . . . . . . 18 ((𝑏 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑏𝐵) = 0 ↔ 𝑏 = 𝐵))
1615necon3abid 2722 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑏𝐵) ≠ 0 ↔ ¬ 𝑏 = 𝐵))
177, 9, 16syl2anc 690 . . . . . . . . . . . . . . . 16 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → ((𝑏𝐵) ≠ 0 ↔ ¬ 𝑏 = 𝐵))
1814, 17mpbird 245 . . . . . . . . . . . . . . 15 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → (𝑏𝐵) ≠ 0)
1910, 18absrpcld 13889 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → (abs‘(𝑏𝐵)) ∈ ℝ+)
20 eleq1 2580 . . . . . . . . . . . . . 14 (𝑐 = (abs‘(𝑏𝐵)) → (𝑐 ∈ ℝ+ ↔ (abs‘(𝑏𝐵)) ∈ ℝ+))
2119, 20syl5ibrcom 235 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → (𝑐 = (abs‘(𝑏𝐵)) → 𝑐 ∈ ℝ+))
2221rexlimdva 2917 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) → (∃𝑏𝐴 𝑐 = (abs‘(𝑏𝐵)) → 𝑐 ∈ ℝ+))
2322expimpd 626 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) → ((𝑐 ∈ ℝ ∧ ∃𝑏𝐴 𝑐 = (abs‘(𝑏𝐵))) → 𝑐 ∈ ℝ+))
243, 23syl5bi 230 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) → (𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} → 𝑐 ∈ ℝ+))
2524ssrdv 3478 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ+)
2625adantr 479 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ+)
27 abrexfi 8023 . . . . . . . . . . 11 (𝐴 ∈ Fin → {𝑎 ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∈ Fin)
28 rabssab 3556 . . . . . . . . . . 11 {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ {𝑎 ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}
29 ssfi 7939 . . . . . . . . . . 11 (({𝑎 ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∈ Fin ∧ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ {𝑎 ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}) → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∈ Fin)
3027, 28, 29sylancl 692 . . . . . . . . . 10 (𝐴 ∈ Fin → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∈ Fin)
3130adantl 480 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∈ Fin)
32 simplrl 795 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → 𝐴 ≠ ∅)
33 n0 3793 . . . . . . . . . . 11 (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦𝐴)
3432, 33sylib 206 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → ∃𝑦 𝑦𝐴)
35 simp-4l 801 . . . . . . . . . . . . . . . 16 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → 𝐴 ⊆ ℝ)
36 simpr 475 . . . . . . . . . . . . . . . 16 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → 𝑦𝐴)
3735, 36sseldd 3473 . . . . . . . . . . . . . . 15 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
3837recnd 9821 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → 𝑦 ∈ ℂ)
39 simp-4r 802 . . . . . . . . . . . . . . 15 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → 𝐵 ∈ ℝ)
4039recnd 9821 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → 𝐵 ∈ ℂ)
4138, 40subcld 10141 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → (𝑦𝐵) ∈ ℂ)
4241abscld 13877 . . . . . . . . . . . 12 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → (abs‘(𝑦𝐵)) ∈ ℝ)
43 eqid 2514 . . . . . . . . . . . . . 14 (abs‘(𝑦𝐵)) = (abs‘(𝑦𝐵))
44 oveq1 6432 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑦 → (𝑏𝐵) = (𝑦𝐵))
4544fveq2d 5990 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑦 → (abs‘(𝑏𝐵)) = (abs‘(𝑦𝐵)))
4645eqeq2d 2524 . . . . . . . . . . . . . . 15 (𝑏 = 𝑦 → ((abs‘(𝑦𝐵)) = (abs‘(𝑏𝐵)) ↔ (abs‘(𝑦𝐵)) = (abs‘(𝑦𝐵))))
4746rspcev 3186 . . . . . . . . . . . . . 14 ((𝑦𝐴 ∧ (abs‘(𝑦𝐵)) = (abs‘(𝑦𝐵))) → ∃𝑏𝐴 (abs‘(𝑦𝐵)) = (abs‘(𝑏𝐵)))
4843, 47mpan2 702 . . . . . . . . . . . . 13 (𝑦𝐴 → ∃𝑏𝐴 (abs‘(𝑦𝐵)) = (abs‘(𝑏𝐵)))
4948adantl 480 . . . . . . . . . . . 12 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → ∃𝑏𝐴 (abs‘(𝑦𝐵)) = (abs‘(𝑏𝐵)))
50 eqeq1 2518 . . . . . . . . . . . . . 14 (𝑎 = (abs‘(𝑦𝐵)) → (𝑎 = (abs‘(𝑏𝐵)) ↔ (abs‘(𝑦𝐵)) = (abs‘(𝑏𝐵))))
5150rexbidv 2938 . . . . . . . . . . . . 13 (𝑎 = (abs‘(𝑦𝐵)) → (∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵)) ↔ ∃𝑏𝐴 (abs‘(𝑦𝐵)) = (abs‘(𝑏𝐵))))
5251elrab 3235 . . . . . . . . . . . 12 ((abs‘(𝑦𝐵)) ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ↔ ((abs‘(𝑦𝐵)) ∈ ℝ ∧ ∃𝑏𝐴 (abs‘(𝑦𝐵)) = (abs‘(𝑏𝐵))))
5342, 49, 52sylanbrc 694 . . . . . . . . . . 11 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → (abs‘(𝑦𝐵)) ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))})
54 ne0i 3783 . . . . . . . . . . 11 ((abs‘(𝑦𝐵)) ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ≠ ∅)
5553, 54syl 17 . . . . . . . . . 10 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ≠ ∅)
5634, 55exlimddv 1816 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ≠ ∅)
57 ssrab2 3554 . . . . . . . . . 10 {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ
5857a1i 11 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ)
59 gtso 9867 . . . . . . . . . 10 < Or ℝ
60 fisupcl 8132 . . . . . . . . . 10 (( < Or ℝ ∧ ({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∈ Fin ∧ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ≠ ∅ ∧ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ)) → sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))})
6159, 60mpan 701 . . . . . . . . 9 (({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∈ Fin ∧ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ≠ ∅ ∧ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ) → sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))})
6231, 56, 58, 61syl3anc 1317 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))})
6326, 62sseldd 3473 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ∈ ℝ+)
6457a1i 11 . . . . . . . . . . 11 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ)
65 soss 4871 . . . . . . . . . . . . . . . 16 ({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ → ( < Or ℝ → < Or {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}))
6657, 59, 65mp2 9 . . . . . . . . . . . . . . 15 < Or {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}
6766a1i 11 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → < Or {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))})
68 fisupg 7967 . . . . . . . . . . . . . 14 (( < Or {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∧ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∈ Fin ∧ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ≠ ∅) → ∃𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} (∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ¬ 𝑐 < 𝑑 ∧ ∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} (𝑑 < 𝑐 → ∃𝑥 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑑 < 𝑥)))
6967, 31, 56, 68syl3anc 1317 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → ∃𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} (∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ¬ 𝑐 < 𝑑 ∧ ∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} (𝑑 < 𝑐 → ∃𝑥 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑑 < 𝑥)))
70 elrabi 3232 . . . . . . . . . . . . . . 15 (𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} → 𝑐 ∈ ℝ)
71 elrabi 3232 . . . . . . . . . . . . . . . . . 18 (𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} → 𝑑 ∈ ℝ)
72 vex 3080 . . . . . . . . . . . . . . . . . . . . . 22 𝑐 ∈ V
73 vex 3080 . . . . . . . . . . . . . . . . . . . . . 22 𝑑 ∈ V
7472, 73brcnv 5119 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 < 𝑑𝑑 < 𝑐)
7574notbii 308 . . . . . . . . . . . . . . . . . . . 20 𝑐 < 𝑑 ↔ ¬ 𝑑 < 𝑐)
76 lenlt 9864 . . . . . . . . . . . . . . . . . . . . 21 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (𝑐𝑑 ↔ ¬ 𝑑 < 𝑐))
7776biimprd 236 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (¬ 𝑑 < 𝑐𝑐𝑑))
7875, 77syl5bi 230 . . . . . . . . . . . . . . . . . . 19 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (¬ 𝑐 < 𝑑𝑐𝑑))
7978adantll 745 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑐 ∈ ℝ) ∧ 𝑑 ∈ ℝ) → (¬ 𝑐 < 𝑑𝑐𝑑))
8071, 79sylan2 489 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑐 ∈ ℝ) ∧ 𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}) → (¬ 𝑐 < 𝑑𝑐𝑑))
8180ralimdva 2849 . . . . . . . . . . . . . . . 16 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑐 ∈ ℝ) → (∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ¬ 𝑐 < 𝑑 → ∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑐𝑑))
8281adantrd 482 . . . . . . . . . . . . . . 15 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑐 ∈ ℝ) → ((∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ¬ 𝑐 < 𝑑 ∧ ∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} (𝑑 < 𝑐 → ∃𝑥 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑑 < 𝑥)) → ∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑐𝑑))
8370, 82sylan2 489 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}) → ((∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ¬ 𝑐 < 𝑑 ∧ ∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} (𝑑 < 𝑐 → ∃𝑥 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑑 < 𝑥)) → ∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑐𝑑))
8483reximdva 2904 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → (∃𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} (∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ¬ 𝑐 < 𝑑 ∧ ∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} (𝑑 < 𝑐 → ∃𝑥 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑑 < 𝑥)) → ∃𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑐𝑑))
8569, 84mpd 15 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → ∃𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑐𝑑)
8685adantr 479 . . . . . . . . . . 11 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → ∃𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑐𝑑)
87 lbinfle 10728 . . . . . . . . . . 11 (({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ ∧ ∃𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑐𝑑 ∧ (abs‘(𝑦𝐵)) ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}) → inf({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ≤ (abs‘(𝑦𝐵)))
8864, 86, 53, 87syl3anc 1317 . . . . . . . . . 10 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → inf({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ≤ (abs‘(𝑦𝐵)))
89 df-inf 8106 . . . . . . . . . . . 12 inf({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) = sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < )
9089eqcomi 2523 . . . . . . . . . . 11 sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) = inf({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < )
9190breq1i 4488 . . . . . . . . . 10 (sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ≤ (abs‘(𝑦𝐵)) ↔ inf({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ≤ (abs‘(𝑦𝐵)))
9288, 91sylibr 222 . . . . . . . . 9 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ≤ (abs‘(𝑦𝐵)))
9357, 62sseldi 3470 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ∈ ℝ)
9493adantr 479 . . . . . . . . . 10 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ∈ ℝ)
9594, 42lenltd 9932 . . . . . . . . 9 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → (sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ≤ (abs‘(𝑦𝐵)) ↔ ¬ (abs‘(𝑦𝐵)) < sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < )))
9692, 95mpbid 220 . . . . . . . 8 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → ¬ (abs‘(𝑦𝐵)) < sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ))
9796ralrimiva 2853 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → ∀𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ))
98 breq2 4485 . . . . . . . . . 10 (𝑥 = sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) → ((abs‘(𝑦𝐵)) < 𝑥 ↔ (abs‘(𝑦𝐵)) < sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < )))
9998notbid 306 . . . . . . . . 9 (𝑥 = sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) → (¬ (abs‘(𝑦𝐵)) < 𝑥 ↔ ¬ (abs‘(𝑦𝐵)) < sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < )))
10099ralbidv 2873 . . . . . . . 8 (𝑥 = sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) → (∀𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < 𝑥 ↔ ∀𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < )))
101100rspcev 3186 . . . . . . 7 ((sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ∈ ℝ+ ∧ ∀𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < )) → ∃𝑥 ∈ ℝ+𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < 𝑥)
10263, 97, 101syl2anc 690 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ+𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < 𝑥)
103 ralnex 2879 . . . . . . . 8 (∀𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < 𝑥 ↔ ¬ ∃𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥)
104103rexbii 2927 . . . . . . 7 (∃𝑥 ∈ ℝ+𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < 𝑥 ↔ ∃𝑥 ∈ ℝ+ ¬ ∃𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥)
105 rexnal 2882 . . . . . . 7 (∃𝑥 ∈ ℝ+ ¬ ∃𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥 ↔ ¬ ∀𝑥 ∈ ℝ+𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥)
106104, 105bitri 262 . . . . . 6 (∃𝑥 ∈ ℝ+𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < 𝑥 ↔ ¬ ∀𝑥 ∈ ℝ+𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥)
107102, 106sylib 206 . . . . 5 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → ¬ ∀𝑥 ∈ ℝ+𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥)
108107ex 448 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) → (𝐴 ∈ Fin → ¬ ∀𝑥 ∈ ℝ+𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥))
1091083impa 1250 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) → (𝐴 ∈ Fin → ¬ ∀𝑥 ∈ ℝ+𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥))
110109con2d 127 . 2 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) → (∀𝑥 ∈ ℝ+𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥 → ¬ 𝐴 ∈ Fin))
111110imp 443 1 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ ∀𝑥 ∈ ℝ+𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥) → ¬ 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wex 1694  wcel 1938  {cab 2500  wne 2684  wral 2800  wrex 2801  {crab 2804  wss 3444  c0 3777   class class class wbr 4481   Or wor 4852  ccnv 4931  cfv 5689  (class class class)co 6425  Fincfn 7715  supcsup 8103  infcinf 8104  cc 9687  cr 9688  0cc0 9689   < clt 9827  cle 9828  cmin 10015  +crp 11570  abscabs 13676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6721  ax-cnex 9745  ax-resscn 9746  ax-1cn 9747  ax-icn 9748  ax-addcl 9749  ax-addrcl 9750  ax-mulcl 9751  ax-mulrcl 9752  ax-mulcom 9753  ax-addass 9754  ax-mulass 9755  ax-distr 9756  ax-i2m1 9757  ax-1ne0 9758  ax-1rid 9759  ax-rnegex 9760  ax-rrecex 9761  ax-cnre 9762  ax-pre-lttri 9763  ax-pre-lttrn 9764  ax-pre-ltadd 9765  ax-pre-mulgt0 9766  ax-pre-sup 9767
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-nel 2687  df-ral 2805  df-rex 2806  df-reu 2807  df-rmo 2808  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-int 4309  df-iun 4355  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-riota 6387  df-ov 6428  df-oprab 6429  df-mpt2 6430  df-om 6832  df-1st 6932  df-2nd 6933  df-wrecs 7167  df-recs 7229  df-rdg 7267  df-1o 7321  df-oadd 7325  df-er 7503  df-en 7716  df-dom 7717  df-sdom 7718  df-fin 7719  df-sup 8105  df-inf 8106  df-pnf 9829  df-mnf 9830  df-xr 9831  df-ltxr 9832  df-le 9833  df-sub 10017  df-neg 10018  df-div 10432  df-nn 10774  df-2 10832  df-3 10833  df-n0 11046  df-z 11117  df-uz 11424  df-rp 11571  df-seq 12528  df-exp 12587  df-cj 13541  df-re 13542  df-im 13543  df-sqrt 13677  df-abs 13678
This theorem is referenced by:  rencldnfi  36269
  Copyright terms: Public domain W3C validator