Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reofld Structured version   Visualization version   GIF version

Theorem reofld 28967
Description: The real numbers form an ordered field. (Contributed by Thierry Arnoux, 21-Jan-2018.)
Assertion
Ref Expression
reofld fld ∈ oField

Proof of Theorem reofld
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 refld 19690 . 2 fld ∈ Field
2 isfld 18486 . . . . 5 (ℝfld ∈ Field ↔ (ℝfld ∈ DivRing ∧ ℝfld ∈ CRing))
32simplbi 474 . . . 4 (ℝfld ∈ Field → ℝfld ∈ DivRing)
4 drngring 18484 . . . 4 (ℝfld ∈ DivRing → ℝfld ∈ Ring)
51, 3, 4mp2b 10 . . 3 fld ∈ Ring
6 ringgrp 18282 . . . . 5 (ℝfld ∈ Ring → ℝfld ∈ Grp)
75, 6ax-mp 5 . . . 4 fld ∈ Grp
8 grpmnd 17144 . . . . . 6 (ℝfld ∈ Grp → ℝfld ∈ Mnd)
97, 8ax-mp 5 . . . . 5 fld ∈ Mnd
10 retos 19689 . . . . 5 fld ∈ Toset
11 simpl 471 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑎𝑏)) → 𝑎 ∈ ℝ)
12 simpr1 1059 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑎𝑏)) → 𝑏 ∈ ℝ)
13 simpr2 1060 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑎𝑏)) → 𝑐 ∈ ℝ)
14 simpr3 1061 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑎𝑏)) → 𝑎𝑏)
1511, 12, 13, 14leadd1dd 10390 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑎𝑏)) → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))
16153anassrs 1281 . . . . . . . 8 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝑐 ∈ ℝ) ∧ 𝑎𝑏) → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))
1716ex 448 . . . . . . 7 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝑐 ∈ ℝ) → (𝑎𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)))
18173impa 1250 . . . . . 6 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (𝑎𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)))
1918rgen3 2863 . . . . 5 𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ∀𝑐 ∈ ℝ (𝑎𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))
20 rebase 19677 . . . . . 6 ℝ = (Base‘ℝfld)
21 replusg 19681 . . . . . 6 + = (+g‘ℝfld)
22 rele2 19685 . . . . . 6 ≤ = (le‘ℝfld)
2320, 21, 22isomnd 28828 . . . . 5 (ℝfld ∈ oMnd ↔ (ℝfld ∈ Mnd ∧ ℝfld ∈ Toset ∧ ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ∀𝑐 ∈ ℝ (𝑎𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))))
249, 10, 19, 23mpbir3an 1236 . . . 4 fld ∈ oMnd
25 isogrp 28829 . . . 4 (ℝfld ∈ oGrp ↔ (ℝfld ∈ Grp ∧ ℝfld ∈ oMnd))
267, 24, 25mpbir2an 956 . . 3 fld ∈ oGrp
27 mulge0 10295 . . . . . 6 (((𝑎 ∈ ℝ ∧ 0 ≤ 𝑎) ∧ (𝑏 ∈ ℝ ∧ 0 ≤ 𝑏)) → 0 ≤ (𝑎 · 𝑏))
2827an4s 864 . . . . 5 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (0 ≤ 𝑎 ∧ 0 ≤ 𝑏)) → 0 ≤ (𝑎 · 𝑏))
2928ex 448 . . . 4 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ((0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏)))
3029rgen2a 2864 . . 3 𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏))
31 re0g 19683 . . . 4 0 = (0g‘ℝfld)
32 remulr 19682 . . . 4 · = (.r‘ℝfld)
3320, 31, 32, 22isorng 28926 . . 3 (ℝfld ∈ oRing ↔ (ℝfld ∈ Ring ∧ ℝfld ∈ oGrp ∧ ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏))))
345, 26, 30, 33mpbir3an 1236 . 2 fld ∈ oRing
35 isofld 28929 . 2 (ℝfld ∈ oField ↔ (ℝfld ∈ Field ∧ ℝfld ∈ oRing))
361, 34, 35mpbir2an 956 1 fld ∈ oField
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030  wcel 1938  wral 2800   class class class wbr 4481  (class class class)co 6426  cr 9690  0cc0 9691   + caddc 9694   · cmul 9696  cle 9830  Tosetctos 16748  Mndcmnd 17009  Grpcgrp 17137  Ringcrg 18277  CRingccrg 18278  DivRingcdr 18477  Fieldcfield 18478  fldcrefld 19675  oMndcomnd 28824  oGrpcogrp 28825  oRingcorng 28922  oFieldcofld 28923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-rep 4597  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6723  ax-cnex 9747  ax-resscn 9748  ax-1cn 9749  ax-icn 9750  ax-addcl 9751  ax-addrcl 9752  ax-mulcl 9753  ax-mulrcl 9754  ax-mulcom 9755  ax-addass 9756  ax-mulass 9757  ax-distr 9758  ax-i2m1 9759  ax-1ne0 9760  ax-1rid 9761  ax-rnegex 9762  ax-rrecex 9763  ax-cnre 9764  ax-pre-lttri 9765  ax-pre-lttrn 9766  ax-pre-ltadd 9767  ax-pre-mulgt0 9768  ax-addf 9770  ax-mulf 9771
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-nel 2687  df-ral 2805  df-rex 2806  df-reu 2807  df-rmo 2808  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-int 4309  df-iun 4355  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-riota 6388  df-ov 6429  df-oprab 6430  df-mpt2 6431  df-om 6834  df-1st 6934  df-2nd 6935  df-tpos 7114  df-wrecs 7169  df-recs 7231  df-rdg 7269  df-1o 7323  df-oadd 7327  df-er 7505  df-en 7718  df-dom 7719  df-sdom 7720  df-fin 7721  df-pnf 9831  df-mnf 9832  df-xr 9833  df-ltxr 9834  df-le 9835  df-sub 10019  df-neg 10020  df-div 10434  df-nn 10776  df-2 10834  df-3 10835  df-4 10836  df-5 10837  df-6 10838  df-7 10839  df-8 10840  df-9 10841  df-n0 11048  df-z 11119  df-dec 11234  df-uz 11428  df-fz 12066  df-struct 15581  df-ndx 15582  df-slot 15583  df-base 15584  df-sets 15585  df-ress 15586  df-plusg 15665  df-mulr 15666  df-starv 15667  df-tset 15671  df-ple 15672  df-ds 15675  df-unif 15676  df-0g 15809  df-preset 16643  df-poset 16661  df-plt 16673  df-toset 16749  df-ps 16915  df-tsr 16916  df-mgm 16957  df-sgrp 16999  df-mnd 17010  df-grp 17140  df-minusg 17141  df-subg 17306  df-cmn 17926  df-mgp 18220  df-ur 18232  df-ring 18279  df-cring 18280  df-oppr 18353  df-dvdsr 18371  df-unit 18372  df-invr 18402  df-dvr 18413  df-drng 18479  df-field 18480  df-subrg 18508  df-cnfld 19472  df-refld 19676  df-omnd 28826  df-ogrp 28827  df-orng 28924  df-ofld 28925
This theorem is referenced by:  nn0omnd  28968  rearchi  28969  rerrext  29177  cnrrext  29178
  Copyright terms: Public domain W3C validator