![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > reopn | Structured version Visualization version GIF version |
Description: The reals are open with respect to the standard topology. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
reopn | ⊢ ℝ ∈ (topGen‘ran (,)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | retop 22612 | . 2 ⊢ (topGen‘ran (,)) ∈ Top | |
2 | uniretop 22613 | . . 3 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
3 | 2 | topopn 20759 | . 2 ⊢ ((topGen‘ran (,)) ∈ Top → ℝ ∈ (topGen‘ran (,))) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ ℝ ∈ (topGen‘ran (,)) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2030 ran crn 5144 ‘cfv 5926 ℝcr 9973 (,)cioo 12213 topGenctg 16145 Topctop 20746 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-pre-lttri 10048 ax-pre-lttrn 10049 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-po 5064 df-so 5065 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-1st 7210 df-2nd 7211 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-ioo 12217 df-topgen 16151 df-top 20747 df-bases 20798 |
This theorem is referenced by: fperdvper 40451 dirkeritg 40637 etransclem2 40771 etransclem23 40792 etransclem35 40804 etransclem38 40807 etransclem39 40808 etransclem44 40813 etransclem45 40814 etransclem47 40816 |
Copyright terms: Public domain | W3C validator |