Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  repr0 Structured version   Visualization version   GIF version

Theorem repr0 31884
Description: There is exactly one representation with no elements (an empty sum), only for 𝑀 = 0. (Contributed by Thierry Arnoux, 2-Dec-2021.)
Hypotheses
Ref Expression
reprval.a (𝜑𝐴 ⊆ ℕ)
reprval.m (𝜑𝑀 ∈ ℤ)
reprval.s (𝜑𝑆 ∈ ℕ0)
Assertion
Ref Expression
repr0 (𝜑 → (𝐴(repr‘0)𝑀) = if(𝑀 = 0, {∅}, ∅))

Proof of Theorem repr0
Dummy variables 𝑐 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reprval.a . . 3 (𝜑𝐴 ⊆ ℕ)
2 reprval.m . . 3 (𝜑𝑀 ∈ ℤ)
3 0nn0 11915 . . . 4 0 ∈ ℕ0
43a1i 11 . . 3 (𝜑 → 0 ∈ ℕ0)
51, 2, 4reprval 31883 . 2 (𝜑 → (𝐴(repr‘0)𝑀) = {𝑐 ∈ (𝐴m (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀})
6 fzo0 13064 . . . . . . . . 9 (0..^0) = ∅
76sumeq1i 15057 . . . . . . . 8 Σ𝑎 ∈ (0..^0)(𝑐𝑎) = Σ𝑎 ∈ ∅ (𝑐𝑎)
8 sum0 15080 . . . . . . . 8 Σ𝑎 ∈ ∅ (𝑐𝑎) = 0
97, 8eqtri 2846 . . . . . . 7 Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 0
109eqeq1i 2828 . . . . . 6 𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀 ↔ 0 = 𝑀)
1110a1i 11 . . . . 5 (𝑐 = ∅ → (Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀 ↔ 0 = 𝑀))
12 0ex 5213 . . . . . . . . 9 ∅ ∈ V
1312snid 4603 . . . . . . . 8 ∅ ∈ {∅}
14 nnex 11646 . . . . . . . . . . 11 ℕ ∈ V
1514a1i 11 . . . . . . . . . 10 (𝜑 → ℕ ∈ V)
1615, 1ssexd 5230 . . . . . . . . 9 (𝜑𝐴 ∈ V)
17 mapdm0 8423 . . . . . . . . 9 (𝐴 ∈ V → (𝐴m ∅) = {∅})
1816, 17syl 17 . . . . . . . 8 (𝜑 → (𝐴m ∅) = {∅})
1913, 18eleqtrrid 2922 . . . . . . 7 (𝜑 → ∅ ∈ (𝐴m ∅))
206oveq2i 7169 . . . . . . 7 (𝐴m (0..^0)) = (𝐴m ∅)
2119, 20eleqtrrdi 2926 . . . . . 6 (𝜑 → ∅ ∈ (𝐴m (0..^0)))
2221adantr 483 . . . . 5 ((𝜑𝑀 = 0) → ∅ ∈ (𝐴m (0..^0)))
23 simpr 487 . . . . . 6 ((𝜑𝑀 = 0) → 𝑀 = 0)
2423eqcomd 2829 . . . . 5 ((𝜑𝑀 = 0) → 0 = 𝑀)
2520, 18syl5eq 2870 . . . . . . . . 9 (𝜑 → (𝐴m (0..^0)) = {∅})
2625eleq2d 2900 . . . . . . . 8 (𝜑 → (𝑐 ∈ (𝐴m (0..^0)) ↔ 𝑐 ∈ {∅}))
2726biimpa 479 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴m (0..^0))) → 𝑐 ∈ {∅})
28 elsni 4586 . . . . . . 7 (𝑐 ∈ {∅} → 𝑐 = ∅)
2927, 28syl 17 . . . . . 6 ((𝜑𝑐 ∈ (𝐴m (0..^0))) → 𝑐 = ∅)
3029ad4ant13 749 . . . . 5 ((((𝜑𝑀 = 0) ∧ 𝑐 ∈ (𝐴m (0..^0))) ∧ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀) → 𝑐 = ∅)
3111, 22, 24, 30rabeqsnd 30266 . . . 4 ((𝜑𝑀 = 0) → {𝑐 ∈ (𝐴m (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀} = {∅})
3231eqcomd 2829 . . 3 ((𝜑𝑀 = 0) → {∅} = {𝑐 ∈ (𝐴m (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀})
339a1i 11 . . . . . . . 8 (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴m (0..^0))) → Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 0)
34 simplr 767 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴m (0..^0))) → ¬ 𝑀 = 0)
3534neqned 3025 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴m (0..^0))) → 𝑀 ≠ 0)
3635necomd 3073 . . . . . . . 8 (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴m (0..^0))) → 0 ≠ 𝑀)
3733, 36eqnetrd 3085 . . . . . . 7 (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴m (0..^0))) → Σ𝑎 ∈ (0..^0)(𝑐𝑎) ≠ 𝑀)
3837neneqd 3023 . . . . . 6 (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴m (0..^0))) → ¬ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀)
3938ralrimiva 3184 . . . . 5 ((𝜑 ∧ ¬ 𝑀 = 0) → ∀𝑐 ∈ (𝐴m (0..^0)) ¬ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀)
40 rabeq0 4340 . . . . 5 ({𝑐 ∈ (𝐴m (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀} = ∅ ↔ ∀𝑐 ∈ (𝐴m (0..^0)) ¬ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀)
4139, 40sylibr 236 . . . 4 ((𝜑 ∧ ¬ 𝑀 = 0) → {𝑐 ∈ (𝐴m (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀} = ∅)
4241eqcomd 2829 . . 3 ((𝜑 ∧ ¬ 𝑀 = 0) → ∅ = {𝑐 ∈ (𝐴m (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀})
4332, 42ifeqda 4504 . 2 (𝜑 → if(𝑀 = 0, {∅}, ∅) = {𝑐 ∈ (𝐴m (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀})
445, 43eqtr4d 2861 1 (𝜑 → (𝐴(repr‘0)𝑀) = if(𝑀 = 0, {∅}, ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3140  {crab 3144  Vcvv 3496  wss 3938  c0 4293  ifcif 4469  {csn 4569  cfv 6357  (class class class)co 7158  m cmap 8408  0cc0 10539  cn 11640  0cn0 11900  cz 11984  ..^cfzo 13036  Σcsu 15044  reprcrepr 31881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-repr 31882
This theorem is referenced by:  breprexp  31906
  Copyright terms: Public domain W3C validator