Step | Hyp | Ref
| Expression |
1 | | nfv 1883 |
. . 3
⊢
Ⅎ𝑑𝜑 |
2 | | nfrab1 3152 |
. . 3
⊢
Ⅎ𝑑{𝑑 ∈ ((𝐴 ↑𝑚 (0..^𝑆)) ∖ (𝐵 ↑𝑚 (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀} |
3 | | nfcv 2793 |
. . 3
⊢
Ⅎ𝑑∪ 𝑥 ∈ (0..^𝑆){𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵} |
4 | | reprdifc.a |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ⊆ ℕ) |
5 | | reprdifc.m |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
6 | 5 | nn0zd 11518 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℤ) |
7 | | reprdifc.s |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 ∈
ℕ0) |
8 | 4, 6, 7 | reprval 30816 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑑 ∈ (𝐴 ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀}) |
9 | 8 | eleq2d 2716 |
. . . . . . . . 9
⊢ (𝜑 → (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ↔ 𝑑 ∈ {𝑑 ∈ (𝐴 ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀})) |
10 | | rabid 3145 |
. . . . . . . . 9
⊢ (𝑑 ∈ {𝑑 ∈ (𝐴 ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀} ↔ (𝑑 ∈ (𝐴 ↑𝑚 (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀)) |
11 | 9, 10 | syl6bb 276 |
. . . . . . . 8
⊢ (𝜑 → (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ↔ (𝑑 ∈ (𝐴 ↑𝑚 (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀))) |
12 | 11 | anbi1d 741 |
. . . . . . 7
⊢ (𝜑 → ((𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ 𝑑 ∈ (𝐵 ↑𝑚 (0..^𝑆))) ↔ ((𝑑 ∈ (𝐴 ↑𝑚 (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀) ∧ ¬ 𝑑 ∈ (𝐵 ↑𝑚 (0..^𝑆))))) |
13 | | eldif 3617 |
. . . . . . . . . 10
⊢ (𝑑 ∈ ((𝐴 ↑𝑚 (0..^𝑆)) ∖ (𝐵 ↑𝑚 (0..^𝑆))) ↔ (𝑑 ∈ (𝐴 ↑𝑚 (0..^𝑆)) ∧ ¬ 𝑑 ∈ (𝐵 ↑𝑚 (0..^𝑆)))) |
14 | 13 | anbi1i 731 |
. . . . . . . . 9
⊢ ((𝑑 ∈ ((𝐴 ↑𝑚 (0..^𝑆)) ∖ (𝐵 ↑𝑚 (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀) ↔ ((𝑑 ∈ (𝐴 ↑𝑚 (0..^𝑆)) ∧ ¬ 𝑑 ∈ (𝐵 ↑𝑚 (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀)) |
15 | | an32 856 |
. . . . . . . . 9
⊢ (((𝑑 ∈ (𝐴 ↑𝑚 (0..^𝑆)) ∧ ¬ 𝑑 ∈ (𝐵 ↑𝑚 (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀) ↔ ((𝑑 ∈ (𝐴 ↑𝑚 (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀) ∧ ¬ 𝑑 ∈ (𝐵 ↑𝑚 (0..^𝑆)))) |
16 | 14, 15 | bitri 264 |
. . . . . . . 8
⊢ ((𝑑 ∈ ((𝐴 ↑𝑚 (0..^𝑆)) ∖ (𝐵 ↑𝑚 (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀) ↔ ((𝑑 ∈ (𝐴 ↑𝑚 (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀) ∧ ¬ 𝑑 ∈ (𝐵 ↑𝑚 (0..^𝑆)))) |
17 | 16 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ((𝑑 ∈ ((𝐴 ↑𝑚 (0..^𝑆)) ∖ (𝐵 ↑𝑚 (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀) ↔ ((𝑑 ∈ (𝐴 ↑𝑚 (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀) ∧ ¬ 𝑑 ∈ (𝐵 ↑𝑚 (0..^𝑆))))) |
18 | 12, 17 | bitr4d 271 |
. . . . . 6
⊢ (𝜑 → ((𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ 𝑑 ∈ (𝐵 ↑𝑚 (0..^𝑆))) ↔ (𝑑 ∈ ((𝐴 ↑𝑚 (0..^𝑆)) ∖ (𝐵 ↑𝑚 (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀))) |
19 | | nnex 11064 |
. . . . . . . . . . . . . 14
⊢ ℕ
∈ V |
20 | 19 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ℕ ∈
V) |
21 | | reprdifc.b |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ⊆ ℕ) |
22 | 20, 21 | ssexd 4838 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ V) |
23 | | ovexd 6720 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0..^𝑆) ∈ V) |
24 | | elmapg 7912 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ V ∧ (0..^𝑆) ∈ V) → (𝑑 ∈ (𝐵 ↑𝑚 (0..^𝑆)) ↔ 𝑑:(0..^𝑆)⟶𝐵)) |
25 | 22, 23, 24 | syl2anc 694 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑑 ∈ (𝐵 ↑𝑚 (0..^𝑆)) ↔ 𝑑:(0..^𝑆)⟶𝐵)) |
26 | 25 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (𝑑 ∈ (𝐵 ↑𝑚 (0..^𝑆)) ↔ 𝑑:(0..^𝑆)⟶𝐵)) |
27 | 4 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝐴 ⊆ ℕ) |
28 | 6 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑀 ∈ ℤ) |
29 | 7 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑆 ∈
ℕ0) |
30 | | simpr 476 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) |
31 | 27, 28, 29, 30 | reprf 30818 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑑:(0..^𝑆)⟶𝐴) |
32 | | ffn 6083 |
. . . . . . . . . . . . 13
⊢ (𝑑:(0..^𝑆)⟶𝐴 → 𝑑 Fn (0..^𝑆)) |
33 | 31, 32 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑑 Fn (0..^𝑆)) |
34 | 33 | biantrurd 528 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (∀𝑥 ∈ (0..^𝑆)(𝑑‘𝑥) ∈ 𝐵 ↔ (𝑑 Fn (0..^𝑆) ∧ ∀𝑥 ∈ (0..^𝑆)(𝑑‘𝑥) ∈ 𝐵))) |
35 | | ffnfv 6428 |
. . . . . . . . . . 11
⊢ (𝑑:(0..^𝑆)⟶𝐵 ↔ (𝑑 Fn (0..^𝑆) ∧ ∀𝑥 ∈ (0..^𝑆)(𝑑‘𝑥) ∈ 𝐵)) |
36 | 34, 35 | syl6rbbr 279 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (𝑑:(0..^𝑆)⟶𝐵 ↔ ∀𝑥 ∈ (0..^𝑆)(𝑑‘𝑥) ∈ 𝐵)) |
37 | 26, 36 | bitrd 268 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (𝑑 ∈ (𝐵 ↑𝑚 (0..^𝑆)) ↔ ∀𝑥 ∈ (0..^𝑆)(𝑑‘𝑥) ∈ 𝐵)) |
38 | 37 | notbid 307 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (¬ 𝑑 ∈ (𝐵 ↑𝑚 (0..^𝑆)) ↔ ¬ ∀𝑥 ∈ (0..^𝑆)(𝑑‘𝑥) ∈ 𝐵)) |
39 | | rexnal 3024 |
. . . . . . . 8
⊢
(∃𝑥 ∈
(0..^𝑆) ¬ (𝑑‘𝑥) ∈ 𝐵 ↔ ¬ ∀𝑥 ∈ (0..^𝑆)(𝑑‘𝑥) ∈ 𝐵) |
40 | 38, 39 | syl6bbr 278 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (¬ 𝑑 ∈ (𝐵 ↑𝑚 (0..^𝑆)) ↔ ∃𝑥 ∈ (0..^𝑆) ¬ (𝑑‘𝑥) ∈ 𝐵)) |
41 | 40 | pm5.32da 674 |
. . . . . 6
⊢ (𝜑 → ((𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ 𝑑 ∈ (𝐵 ↑𝑚 (0..^𝑆))) ↔ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ∃𝑥 ∈ (0..^𝑆) ¬ (𝑑‘𝑥) ∈ 𝐵))) |
42 | 18, 41 | bitr3d 270 |
. . . . 5
⊢ (𝜑 → ((𝑑 ∈ ((𝐴 ↑𝑚 (0..^𝑆)) ∖ (𝐵 ↑𝑚 (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀) ↔ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ∃𝑥 ∈ (0..^𝑆) ¬ (𝑑‘𝑥) ∈ 𝐵))) |
43 | | fveq1 6228 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑑 → (𝑐‘𝑥) = (𝑑‘𝑥)) |
44 | 43 | eleq1d 2715 |
. . . . . . . . 9
⊢ (𝑐 = 𝑑 → ((𝑐‘𝑥) ∈ 𝐵 ↔ (𝑑‘𝑥) ∈ 𝐵)) |
45 | 44 | notbid 307 |
. . . . . . . 8
⊢ (𝑐 = 𝑑 → (¬ (𝑐‘𝑥) ∈ 𝐵 ↔ ¬ (𝑑‘𝑥) ∈ 𝐵)) |
46 | 45 | elrab 3396 |
. . . . . . 7
⊢ (𝑑 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵} ↔ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ (𝑑‘𝑥) ∈ 𝐵)) |
47 | 46 | rexbii 3070 |
. . . . . 6
⊢
(∃𝑥 ∈
(0..^𝑆)𝑑 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵} ↔ ∃𝑥 ∈ (0..^𝑆)(𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ (𝑑‘𝑥) ∈ 𝐵)) |
48 | | r19.42v 3121 |
. . . . . 6
⊢
(∃𝑥 ∈
(0..^𝑆)(𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ (𝑑‘𝑥) ∈ 𝐵) ↔ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ∃𝑥 ∈ (0..^𝑆) ¬ (𝑑‘𝑥) ∈ 𝐵)) |
49 | 47, 48 | bitri 264 |
. . . . 5
⊢
(∃𝑥 ∈
(0..^𝑆)𝑑 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵} ↔ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ∃𝑥 ∈ (0..^𝑆) ¬ (𝑑‘𝑥) ∈ 𝐵)) |
50 | 42, 49 | syl6bbr 278 |
. . . 4
⊢ (𝜑 → ((𝑑 ∈ ((𝐴 ↑𝑚 (0..^𝑆)) ∖ (𝐵 ↑𝑚 (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀) ↔ ∃𝑥 ∈ (0..^𝑆)𝑑 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵})) |
51 | | rabid 3145 |
. . . 4
⊢ (𝑑 ∈ {𝑑 ∈ ((𝐴 ↑𝑚 (0..^𝑆)) ∖ (𝐵 ↑𝑚 (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀} ↔ (𝑑 ∈ ((𝐴 ↑𝑚 (0..^𝑆)) ∖ (𝐵 ↑𝑚 (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀)) |
52 | | eliun 4556 |
. . . 4
⊢ (𝑑 ∈ ∪ 𝑥 ∈ (0..^𝑆){𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵} ↔ ∃𝑥 ∈ (0..^𝑆)𝑑 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵}) |
53 | 50, 51, 52 | 3bitr4g 303 |
. . 3
⊢ (𝜑 → (𝑑 ∈ {𝑑 ∈ ((𝐴 ↑𝑚 (0..^𝑆)) ∖ (𝐵 ↑𝑚 (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀} ↔ 𝑑 ∈ ∪
𝑥 ∈ (0..^𝑆){𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵})) |
54 | 1, 2, 3, 53 | eqrd 3655 |
. 2
⊢ (𝜑 → {𝑑 ∈ ((𝐴 ↑𝑚 (0..^𝑆)) ∖ (𝐵 ↑𝑚 (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀} = ∪
𝑥 ∈ (0..^𝑆){𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵}) |
55 | 21, 6, 7 | reprval 30816 |
. . . 4
⊢ (𝜑 → (𝐵(repr‘𝑆)𝑀) = {𝑑 ∈ (𝐵 ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀}) |
56 | 8, 55 | difeq12d 3762 |
. . 3
⊢ (𝜑 → ((𝐴(repr‘𝑆)𝑀) ∖ (𝐵(repr‘𝑆)𝑀)) = ({𝑑 ∈ (𝐴 ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀} ∖ {𝑑 ∈ (𝐵 ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀})) |
57 | | difrab2 29465 |
. . 3
⊢ ({𝑑 ∈ (𝐴 ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀} ∖ {𝑑 ∈ (𝐵 ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀}) = {𝑑 ∈ ((𝐴 ↑𝑚 (0..^𝑆)) ∖ (𝐵 ↑𝑚 (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀} |
58 | 56, 57 | syl6eq 2701 |
. 2
⊢ (𝜑 → ((𝐴(repr‘𝑆)𝑀) ∖ (𝐵(repr‘𝑆)𝑀)) = {𝑑 ∈ ((𝐴 ↑𝑚 (0..^𝑆)) ∖ (𝐵 ↑𝑚 (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀}) |
59 | | reprdifc.c |
. . . 4
⊢ 𝐶 = {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵} |
60 | 59 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐶 = {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵}) |
61 | 60 | iuneq2d 4579 |
. 2
⊢ (𝜑 → ∪ 𝑥 ∈ (0..^𝑆)𝐶 = ∪ 𝑥 ∈ (0..^𝑆){𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵}) |
62 | 54, 58, 61 | 3eqtr4d 2695 |
1
⊢ (𝜑 → ((𝐴(repr‘𝑆)𝑀) ∖ (𝐵(repr‘𝑆)𝑀)) = ∪
𝑥 ∈ (0..^𝑆)𝐶) |