Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reprgt Structured version   Visualization version   GIF version

Theorem reprgt 30827
Description: There are no representations of more than (𝑆 · 𝑁) with only 𝑆 terms bounded by 𝑁. Remark of [Nathanson] p. 123 (Contributed by Thierry Arnoux, 7-Dec-2021.)
Hypotheses
Ref Expression
reprgt.n (𝜑𝑁 ∈ ℕ0)
reprgt.a (𝜑𝐴 ⊆ (1...𝑁))
reprgt.m (𝜑𝑀 ∈ ℤ)
reprgt.s (𝜑𝑆 ∈ ℕ0)
reprgt.1 (𝜑 → (𝑆 · 𝑁) < 𝑀)
Assertion
Ref Expression
reprgt (𝜑 → (𝐴(repr‘𝑆)𝑀) = ∅)

Proof of Theorem reprgt
Dummy variables 𝑎 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reprgt.a . . . 4 (𝜑𝐴 ⊆ (1...𝑁))
2 fz1ssnn 12410 . . . 4 (1...𝑁) ⊆ ℕ
31, 2syl6ss 3648 . . 3 (𝜑𝐴 ⊆ ℕ)
4 reprgt.m . . 3 (𝜑𝑀 ∈ ℤ)
5 reprgt.s . . 3 (𝜑𝑆 ∈ ℕ0)
63, 4, 5reprval 30816 . 2 (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
7 fzofi 12813 . . . . . . . 8 (0..^𝑆) ∈ Fin
87a1i 11 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → (0..^𝑆) ∈ Fin)
9 nnssre 11062 . . . . . . . . . . . . 13 ℕ ⊆ ℝ
103, 9syl6ss 3648 . . . . . . . . . . . 12 (𝜑𝐴 ⊆ ℝ)
1110ralrimivw 2996 . . . . . . . . . . 11 (𝜑 → ∀𝑎 ∈ (0..^𝑆)𝐴 ⊆ ℝ)
1211ralrimivw 2996 . . . . . . . . . 10 (𝜑 → ∀𝑐 ∈ (𝐴𝑚 (0..^𝑆))∀𝑎 ∈ (0..^𝑆)𝐴 ⊆ ℝ)
1312r19.21bi 2961 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → ∀𝑎 ∈ (0..^𝑆)𝐴 ⊆ ℝ)
1413r19.21bi 2961 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐴 ⊆ ℝ)
15 ovex 6718 . . . . . . . . . . . . . 14 (1...𝑁) ∈ V
1615a1i 11 . . . . . . . . . . . . 13 (𝜑 → (1...𝑁) ∈ V)
1716, 1ssexd 4838 . . . . . . . . . . . 12 (𝜑𝐴 ∈ V)
1817adantr 480 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → 𝐴 ∈ V)
197elexi 3244 . . . . . . . . . . . 12 (0..^𝑆) ∈ V
2019a1i 11 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → (0..^𝑆) ∈ V)
21 simpr 476 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → 𝑐 ∈ (𝐴𝑚 (0..^𝑆)))
22 elmapg 7912 . . . . . . . . . . . 12 ((𝐴 ∈ V ∧ (0..^𝑆) ∈ V) → (𝑐 ∈ (𝐴𝑚 (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶𝐴))
2322biimpa 500 . . . . . . . . . . 11 (((𝐴 ∈ V ∧ (0..^𝑆) ∈ V) ∧ 𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → 𝑐:(0..^𝑆)⟶𝐴)
2418, 20, 21, 23syl21anc 1365 . . . . . . . . . 10 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → 𝑐:(0..^𝑆)⟶𝐴)
2524adantr 480 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑐:(0..^𝑆)⟶𝐴)
26 simpr 476 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑎 ∈ (0..^𝑆))
2725, 26ffvelrnd 6400 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ 𝐴)
2814, 27sseldd 3637 . . . . . . 7 (((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ ℝ)
298, 28fsumrecl 14509 . . . . . 6 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ∈ ℝ)
305nn0red 11390 . . . . . . . . 9 (𝜑𝑆 ∈ ℝ)
3130adantr 480 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → 𝑆 ∈ ℝ)
32 reprgt.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
3332nn0red 11390 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
3433adantr 480 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → 𝑁 ∈ ℝ)
3531, 34remulcld 10108 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → (𝑆 · 𝑁) ∈ ℝ)
364zred 11520 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
3736adantr 480 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → 𝑀 ∈ ℝ)
3833ad2antrr 762 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑁 ∈ ℝ)
391ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐴 ⊆ (1...𝑁))
4039, 27sseldd 3637 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ (1...𝑁))
41 elfzle2 12383 . . . . . . . . . 10 ((𝑐𝑎) ∈ (1...𝑁) → (𝑐𝑎) ≤ 𝑁)
4240, 41syl 17 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ≤ 𝑁)
438, 28, 38, 42fsumle 14575 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ≤ Σ𝑎 ∈ (0..^𝑆)𝑁)
4433recnd 10106 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
45 fsumconst 14566 . . . . . . . . . . 11 (((0..^𝑆) ∈ Fin ∧ 𝑁 ∈ ℂ) → Σ𝑎 ∈ (0..^𝑆)𝑁 = ((#‘(0..^𝑆)) · 𝑁))
467, 44, 45sylancr 696 . . . . . . . . . 10 (𝜑 → Σ𝑎 ∈ (0..^𝑆)𝑁 = ((#‘(0..^𝑆)) · 𝑁))
47 hashfzo0 13255 . . . . . . . . . . . 12 (𝑆 ∈ ℕ0 → (#‘(0..^𝑆)) = 𝑆)
485, 47syl 17 . . . . . . . . . . 11 (𝜑 → (#‘(0..^𝑆)) = 𝑆)
4948oveq1d 6705 . . . . . . . . . 10 (𝜑 → ((#‘(0..^𝑆)) · 𝑁) = (𝑆 · 𝑁))
5046, 49eqtrd 2685 . . . . . . . . 9 (𝜑 → Σ𝑎 ∈ (0..^𝑆)𝑁 = (𝑆 · 𝑁))
5150adantr 480 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)𝑁 = (𝑆 · 𝑁))
5243, 51breqtrd 4711 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ≤ (𝑆 · 𝑁))
53 reprgt.1 . . . . . . . 8 (𝜑 → (𝑆 · 𝑁) < 𝑀)
5453adantr 480 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → (𝑆 · 𝑁) < 𝑀)
5529, 35, 37, 52, 54lelttrd 10233 . . . . . 6 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) < 𝑀)
5629, 55ltned 10211 . . . . 5 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ≠ 𝑀)
5756neneqd 2828 . . . 4 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → ¬ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)
5857ralrimiva 2995 . . 3 (𝜑 → ∀𝑐 ∈ (𝐴𝑚 (0..^𝑆)) ¬ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)
59 rabeq0 3990 . . 3 ({𝑐 ∈ (𝐴𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} = ∅ ↔ ∀𝑐 ∈ (𝐴𝑚 (0..^𝑆)) ¬ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)
6058, 59sylibr 224 . 2 (𝜑 → {𝑐 ∈ (𝐴𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} = ∅)
616, 60eqtrd 2685 1 (𝜑 → (𝐴(repr‘𝑆)𝑀) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1523  wcel 2030  wral 2941  {crab 2945  Vcvv 3231  wss 3607  c0 3948   class class class wbr 4685  wf 5922  cfv 5926  (class class class)co 6690  𝑚 cmap 7899  Fincfn 7997  cc 9972  cr 9973  0cc0 9974  1c1 9975   · cmul 9979   < clt 10112  cle 10113  cn 11058  0cn0 11330  cz 11415  ...cfz 12364  ..^cfzo 12504  #chash 13157  Σcsu 14460  reprcrepr 30814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-ico 12219  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-repr 30815
This theorem is referenced by:  breprexplemc  30838
  Copyright terms: Public domain W3C validator