MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repswcshw Structured version   Visualization version   GIF version

Theorem repswcshw 13758
Description: A cyclically shifted "repeated symbol word". (Contributed by Alexander van der Vekens, 7-Nov-2018.)
Assertion
Ref Expression
repswcshw ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) cyclShift 𝐼) = (𝑆 repeatS 𝑁))

Proof of Theorem repswcshw
StepHypRef Expression
1 0csh0 13739 . . . . 5 (∅ cyclShift 𝐼) = ∅
2 repsw0 13724 . . . . . 6 (𝑆𝑉 → (𝑆 repeatS 0) = ∅)
32oveq1d 6828 . . . . 5 (𝑆𝑉 → ((𝑆 repeatS 0) cyclShift 𝐼) = (∅ cyclShift 𝐼))
41, 3, 23eqtr4a 2820 . . . 4 (𝑆𝑉 → ((𝑆 repeatS 0) cyclShift 𝐼) = (𝑆 repeatS 0))
543ad2ant1 1128 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ ℤ) → ((𝑆 repeatS 0) cyclShift 𝐼) = (𝑆 repeatS 0))
6 oveq2 6821 . . . . 5 (𝑁 = 0 → (𝑆 repeatS 𝑁) = (𝑆 repeatS 0))
76oveq1d 6828 . . . 4 (𝑁 = 0 → ((𝑆 repeatS 𝑁) cyclShift 𝐼) = ((𝑆 repeatS 0) cyclShift 𝐼))
87, 6eqeq12d 2775 . . 3 (𝑁 = 0 → (((𝑆 repeatS 𝑁) cyclShift 𝐼) = (𝑆 repeatS 𝑁) ↔ ((𝑆 repeatS 0) cyclShift 𝐼) = (𝑆 repeatS 0)))
95, 8syl5ibr 236 . 2 (𝑁 = 0 → ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) cyclShift 𝐼) = (𝑆 repeatS 𝑁)))
10 idd 24 . . . 4 𝑁 = 0 → (𝑆𝑉𝑆𝑉))
11 df-ne 2933 . . . . 5 (𝑁 ≠ 0 ↔ ¬ 𝑁 = 0)
12 elnnne0 11498 . . . . . 6 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0𝑁 ≠ 0))
1312simplbi2com 658 . . . . 5 (𝑁 ≠ 0 → (𝑁 ∈ ℕ0𝑁 ∈ ℕ))
1411, 13sylbir 225 . . . 4 𝑁 = 0 → (𝑁 ∈ ℕ0𝑁 ∈ ℕ))
15 idd 24 . . . 4 𝑁 = 0 → (𝐼 ∈ ℤ → 𝐼 ∈ ℤ))
1610, 14, 153anim123d 1555 . . 3 𝑁 = 0 → ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ ℤ) → (𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ)))
17 nnnn0 11491 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
1817anim2i 594 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ) → (𝑆𝑉𝑁 ∈ ℕ0))
19 repsw 13722 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) ∈ Word 𝑉)
2018, 19syl 17 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ) → (𝑆 repeatS 𝑁) ∈ Word 𝑉)
21 cshword 13737 . . . . 5 (((𝑆 repeatS 𝑁) ∈ Word 𝑉𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) cyclShift 𝐼) = (((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod (♯‘(𝑆 repeatS 𝑁))), (♯‘(𝑆 repeatS 𝑁))⟩) ++ ((𝑆 repeatS 𝑁) substr ⟨0, (𝐼 mod (♯‘(𝑆 repeatS 𝑁)))⟩)))
2220, 21stoic3 1850 . . . 4 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) cyclShift 𝐼) = (((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod (♯‘(𝑆 repeatS 𝑁))), (♯‘(𝑆 repeatS 𝑁))⟩) ++ ((𝑆 repeatS 𝑁) substr ⟨0, (𝐼 mod (♯‘(𝑆 repeatS 𝑁)))⟩)))
23 repswlen 13723 . . . . . . . . . 10 ((𝑆𝑉𝑁 ∈ ℕ0) → (♯‘(𝑆 repeatS 𝑁)) = 𝑁)
2418, 23syl 17 . . . . . . . . 9 ((𝑆𝑉𝑁 ∈ ℕ) → (♯‘(𝑆 repeatS 𝑁)) = 𝑁)
2524oveq2d 6829 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ) → (𝐼 mod (♯‘(𝑆 repeatS 𝑁))) = (𝐼 mod 𝑁))
2625, 24opeq12d 4561 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ) → ⟨(𝐼 mod (♯‘(𝑆 repeatS 𝑁))), (♯‘(𝑆 repeatS 𝑁))⟩ = ⟨(𝐼 mod 𝑁), 𝑁⟩)
2726oveq2d 6829 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ) → ((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod (♯‘(𝑆 repeatS 𝑁))), (♯‘(𝑆 repeatS 𝑁))⟩) = ((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod 𝑁), 𝑁⟩))
2825opeq2d 4560 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ) → ⟨0, (𝐼 mod (♯‘(𝑆 repeatS 𝑁)))⟩ = ⟨0, (𝐼 mod 𝑁)⟩)
2928oveq2d 6829 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ) → ((𝑆 repeatS 𝑁) substr ⟨0, (𝐼 mod (♯‘(𝑆 repeatS 𝑁)))⟩) = ((𝑆 repeatS 𝑁) substr ⟨0, (𝐼 mod 𝑁)⟩))
3027, 29oveq12d 6831 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ) → (((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod (♯‘(𝑆 repeatS 𝑁))), (♯‘(𝑆 repeatS 𝑁))⟩) ++ ((𝑆 repeatS 𝑁) substr ⟨0, (𝐼 mod (♯‘(𝑆 repeatS 𝑁)))⟩)) = (((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod 𝑁), 𝑁⟩) ++ ((𝑆 repeatS 𝑁) substr ⟨0, (𝐼 mod 𝑁)⟩)))
31303adant3 1127 . . . 4 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod (♯‘(𝑆 repeatS 𝑁))), (♯‘(𝑆 repeatS 𝑁))⟩) ++ ((𝑆 repeatS 𝑁) substr ⟨0, (𝐼 mod (♯‘(𝑆 repeatS 𝑁)))⟩)) = (((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod 𝑁), 𝑁⟩) ++ ((𝑆 repeatS 𝑁) substr ⟨0, (𝐼 mod 𝑁)⟩)))
32183adant3 1127 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝑆𝑉𝑁 ∈ ℕ0))
33 zmodcl 12884 . . . . . . . . . 10 ((𝐼 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐼 mod 𝑁) ∈ ℕ0)
3433ancoms 468 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝐼 mod 𝑁) ∈ ℕ0)
3517adantr 472 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → 𝑁 ∈ ℕ0)
3634, 35jca 555 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝐼 mod 𝑁) ∈ ℕ0𝑁 ∈ ℕ0))
37363adant1 1125 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝐼 mod 𝑁) ∈ ℕ0𝑁 ∈ ℕ0))
38 nnre 11219 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
3938leidd 10786 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁𝑁)
40393ad2ant2 1129 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → 𝑁𝑁)
41 repswswrd 13731 . . . . . . 7 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ ((𝐼 mod 𝑁) ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝑁) → ((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod 𝑁), 𝑁⟩) = (𝑆 repeatS (𝑁 − (𝐼 mod 𝑁))))
4232, 37, 40, 41syl3anc 1477 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod 𝑁), 𝑁⟩) = (𝑆 repeatS (𝑁 − (𝐼 mod 𝑁))))
43 0nn0 11499 . . . . . . . . 9 0 ∈ ℕ0
4434, 43jctil 561 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (0 ∈ ℕ0 ∧ (𝐼 mod 𝑁) ∈ ℕ0))
45443adant1 1125 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (0 ∈ ℕ0 ∧ (𝐼 mod 𝑁) ∈ ℕ0))
46 zre 11573 . . . . . . . . . 10 (𝐼 ∈ ℤ → 𝐼 ∈ ℝ)
47 nnrp 12035 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
48 modcl 12866 . . . . . . . . . 10 ((𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (𝐼 mod 𝑁) ∈ ℝ)
4946, 47, 48syl2anr 496 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝐼 mod 𝑁) ∈ ℝ)
5038adantr 472 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → 𝑁 ∈ ℝ)
51 modlt 12873 . . . . . . . . . 10 ((𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (𝐼 mod 𝑁) < 𝑁)
5246, 47, 51syl2anr 496 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝐼 mod 𝑁) < 𝑁)
5349, 50, 52ltled 10377 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝐼 mod 𝑁) ≤ 𝑁)
54533adant1 1125 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝐼 mod 𝑁) ≤ 𝑁)
55 repswswrd 13731 . . . . . . 7 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (0 ∈ ℕ0 ∧ (𝐼 mod 𝑁) ∈ ℕ0) ∧ (𝐼 mod 𝑁) ≤ 𝑁) → ((𝑆 repeatS 𝑁) substr ⟨0, (𝐼 mod 𝑁)⟩) = (𝑆 repeatS ((𝐼 mod 𝑁) − 0)))
5632, 45, 54, 55syl3anc 1477 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) substr ⟨0, (𝐼 mod 𝑁)⟩) = (𝑆 repeatS ((𝐼 mod 𝑁) − 0)))
5742, 56oveq12d 6831 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod 𝑁), 𝑁⟩) ++ ((𝑆 repeatS 𝑁) substr ⟨0, (𝐼 mod 𝑁)⟩)) = ((𝑆 repeatS (𝑁 − (𝐼 mod 𝑁))) ++ (𝑆 repeatS ((𝐼 mod 𝑁) − 0))))
58 simp1 1131 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → 𝑆𝑉)
5933nn0red 11544 . . . . . . . . . 10 ((𝐼 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐼 mod 𝑁) ∈ ℝ)
6059ancoms 468 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝐼 mod 𝑁) ∈ ℝ)
6160, 50, 52ltled 10377 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝐼 mod 𝑁) ≤ 𝑁)
62613adant1 1125 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝐼 mod 𝑁) ≤ 𝑁)
63343adant1 1125 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝐼 mod 𝑁) ∈ ℕ0)
64173ad2ant2 1129 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → 𝑁 ∈ ℕ0)
65 nn0sub 11535 . . . . . . . 8 (((𝐼 mod 𝑁) ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐼 mod 𝑁) ≤ 𝑁 ↔ (𝑁 − (𝐼 mod 𝑁)) ∈ ℕ0))
6663, 64, 65syl2anc 696 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝐼 mod 𝑁) ≤ 𝑁 ↔ (𝑁 − (𝐼 mod 𝑁)) ∈ ℕ0))
6762, 66mpbid 222 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝑁 − (𝐼 mod 𝑁)) ∈ ℕ0)
6833nn0ge0d 11546 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 0 ≤ (𝐼 mod 𝑁))
6968ancoms 468 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → 0 ≤ (𝐼 mod 𝑁))
70693adant1 1125 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → 0 ≤ (𝐼 mod 𝑁))
7163, 43jctil 561 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (0 ∈ ℕ0 ∧ (𝐼 mod 𝑁) ∈ ℕ0))
72 nn0sub 11535 . . . . . . . 8 ((0 ∈ ℕ0 ∧ (𝐼 mod 𝑁) ∈ ℕ0) → (0 ≤ (𝐼 mod 𝑁) ↔ ((𝐼 mod 𝑁) − 0) ∈ ℕ0))
7371, 72syl 17 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (0 ≤ (𝐼 mod 𝑁) ↔ ((𝐼 mod 𝑁) − 0) ∈ ℕ0))
7470, 73mpbid 222 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝐼 mod 𝑁) − 0) ∈ ℕ0)
75 repswccat 13732 . . . . . 6 ((𝑆𝑉 ∧ (𝑁 − (𝐼 mod 𝑁)) ∈ ℕ0 ∧ ((𝐼 mod 𝑁) − 0) ∈ ℕ0) → ((𝑆 repeatS (𝑁 − (𝐼 mod 𝑁))) ++ (𝑆 repeatS ((𝐼 mod 𝑁) − 0))) = (𝑆 repeatS ((𝑁 − (𝐼 mod 𝑁)) + ((𝐼 mod 𝑁) − 0))))
7658, 67, 74, 75syl3anc 1477 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝑆 repeatS (𝑁 − (𝐼 mod 𝑁))) ++ (𝑆 repeatS ((𝐼 mod 𝑁) − 0))) = (𝑆 repeatS ((𝑁 − (𝐼 mod 𝑁)) + ((𝐼 mod 𝑁) − 0))))
77 nncn 11220 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
7877adantl 473 . . . . . . . . . 10 ((𝐼 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
7933nn0cnd 11545 . . . . . . . . . 10 ((𝐼 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐼 mod 𝑁) ∈ ℂ)
80 0cnd 10225 . . . . . . . . . 10 ((𝐼 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 0 ∈ ℂ)
8178, 79, 80npncand 10608 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑁 − (𝐼 mod 𝑁)) + ((𝐼 mod 𝑁) − 0)) = (𝑁 − 0))
8277subid1d 10573 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 − 0) = 𝑁)
8382adantl 473 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 − 0) = 𝑁)
8481, 83eqtrd 2794 . . . . . . . 8 ((𝐼 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑁 − (𝐼 mod 𝑁)) + ((𝐼 mod 𝑁) − 0)) = 𝑁)
8584ancoms 468 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝑁 − (𝐼 mod 𝑁)) + ((𝐼 mod 𝑁) − 0)) = 𝑁)
86853adant1 1125 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝑁 − (𝐼 mod 𝑁)) + ((𝐼 mod 𝑁) − 0)) = 𝑁)
8786oveq2d 6829 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝑆 repeatS ((𝑁 − (𝐼 mod 𝑁)) + ((𝐼 mod 𝑁) − 0))) = (𝑆 repeatS 𝑁))
8857, 76, 873eqtrd 2798 . . . 4 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod 𝑁), 𝑁⟩) ++ ((𝑆 repeatS 𝑁) substr ⟨0, (𝐼 mod 𝑁)⟩)) = (𝑆 repeatS 𝑁))
8922, 31, 883eqtrd 2798 . . 3 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) cyclShift 𝐼) = (𝑆 repeatS 𝑁))
9016, 89syl6 35 . 2 𝑁 = 0 → ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) cyclShift 𝐼) = (𝑆 repeatS 𝑁)))
919, 90pm2.61i 176 1 ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) cyclShift 𝐼) = (𝑆 repeatS 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  c0 4058  cop 4327   class class class wbr 4804  cfv 6049  (class class class)co 6813  cc 10126  cr 10127  0cc0 10128   + caddc 10131   < clt 10266  cle 10267  cmin 10458  cn 11212  0cn0 11484  cz 11569  +crp 12025   mod cmo 12862  chash 13311  Word cword 13477   ++ cconcat 13479   substr csubstr 13481   repeatS creps 13484   cyclShift ccsh 13734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-sup 8513  df-inf 8514  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880  df-rp 12026  df-fz 12520  df-fzo 12660  df-fl 12787  df-mod 12863  df-hash 13312  df-word 13485  df-concat 13487  df-substr 13489  df-reps 13492  df-csh 13735
This theorem is referenced by:  cshwrepswhash1  16011
  Copyright terms: Public domain W3C validator