MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repswsymb Structured version   Visualization version   GIF version

Theorem repswsymb 14130
Description: The symbols of a "repeated symbol word". (Contributed by AV, 4-Nov-2018.)
Assertion
Ref Expression
repswsymb ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘𝐼) = 𝑆)

Proof of Theorem repswsymb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 reps 14126 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆))
213adant3 1128 . 2 ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ (0..^𝑁)) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆))
3 eqidd 2822 . 2 (((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ (0..^𝑁)) ∧ 𝑥 = 𝐼) → 𝑆 = 𝑆)
4 simp3 1134 . 2 ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ (0..^𝑁)) → 𝐼 ∈ (0..^𝑁))
5 simp1 1132 . 2 ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ (0..^𝑁)) → 𝑆𝑉)
62, 3, 4, 5fvmptd 6770 1 ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘𝐼) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  cmpt 5139  cfv 6350  (class class class)co 7150  0cc0 10531  0cn0 11891  ..^cfzo 13027   repeatS creps 14124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pr 5322
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-reps 14125
This theorem is referenced by:  repswfsts  14137  repswlsw  14138  repswswrd  14140  repswpfx  14141  repswccat  14142  repswrevw  14143  repsco  14196
  Copyright terms: Public domain W3C validator