MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rescabs2 Structured version   Visualization version   GIF version

Theorem rescabs2 17103
Description: Restriction absorption law. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
rescabs2.c (𝜑𝐶𝑉)
rescabs2.j (𝜑𝐽 Fn (𝑇 × 𝑇))
rescabs2.s (𝜑𝑆𝑊)
rescabs2.t (𝜑𝑇𝑆)
Assertion
Ref Expression
rescabs2 (𝜑 → ((𝐶s 𝑆) ↾cat 𝐽) = (𝐶cat 𝐽))

Proof of Theorem rescabs2
StepHypRef Expression
1 rescabs2.s . . . 4 (𝜑𝑆𝑊)
2 rescabs2.t . . . 4 (𝜑𝑇𝑆)
3 ressabs 16562 . . . 4 ((𝑆𝑊𝑇𝑆) → ((𝐶s 𝑆) ↾s 𝑇) = (𝐶s 𝑇))
41, 2, 3syl2anc 586 . . 3 (𝜑 → ((𝐶s 𝑆) ↾s 𝑇) = (𝐶s 𝑇))
54oveq1d 7170 . 2 (𝜑 → (((𝐶s 𝑆) ↾s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
6 eqid 2821 . . 3 ((𝐶s 𝑆) ↾cat 𝐽) = ((𝐶s 𝑆) ↾cat 𝐽)
7 ovexd 7190 . . 3 (𝜑 → (𝐶s 𝑆) ∈ V)
81, 2ssexd 5227 . . 3 (𝜑𝑇 ∈ V)
9 rescabs2.j . . 3 (𝜑𝐽 Fn (𝑇 × 𝑇))
106, 7, 8, 9rescval2 17097 . 2 (𝜑 → ((𝐶s 𝑆) ↾cat 𝐽) = (((𝐶s 𝑆) ↾s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
11 eqid 2821 . . 3 (𝐶cat 𝐽) = (𝐶cat 𝐽)
12 rescabs2.c . . 3 (𝜑𝐶𝑉)
1311, 12, 8, 9rescval2 17097 . 2 (𝜑 → (𝐶cat 𝐽) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
145, 10, 133eqtr4d 2866 1 (𝜑 → ((𝐶s 𝑆) ↾cat 𝐽) = (𝐶cat 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  Vcvv 3494  wss 3935  cop 4572   × cxp 5552   Fn wfn 6349  cfv 6354  (class class class)co 7155  ndxcnx 16479   sSet csts 16480  s cress 16483  Hom chom 16575  cat cresc 17077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-1cn 10594  ax-addcl 10596
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-nn 11638  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-resc 17080
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator