![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resdisj | Structured version Visualization version GIF version |
Description: A double restriction to disjoint classes is the empty set. (Contributed by NM, 7-Oct-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
resdisj | ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐶 ↾ 𝐴) ↾ 𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseq2 5423 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐶 ↾ (𝐴 ∩ 𝐵)) = (𝐶 ↾ ∅)) | |
2 | resres 5444 | . 2 ⊢ ((𝐶 ↾ 𝐴) ↾ 𝐵) = (𝐶 ↾ (𝐴 ∩ 𝐵)) | |
3 | res0 5432 | . . 3 ⊢ (𝐶 ↾ ∅) = ∅ | |
4 | 3 | eqcomi 2660 | . 2 ⊢ ∅ = (𝐶 ↾ ∅) |
5 | 1, 2, 4 | 3eqtr4g 2710 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐶 ↾ 𝐴) ↾ 𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∩ cin 3606 ∅c0 3948 ↾ cres 5145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-opab 4746 df-xp 5149 df-rel 5150 df-res 5155 |
This theorem is referenced by: fvsnun1 6489 |
Copyright terms: Public domain | W3C validator |