Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  reseq12i Structured version   Visualization version   GIF version

Theorem reseq12i 5364
 Description: Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.)
Hypotheses
Ref Expression
reseqi.1 𝐴 = 𝐵
reseqi.2 𝐶 = 𝐷
Assertion
Ref Expression
reseq12i (𝐴𝐶) = (𝐵𝐷)

Proof of Theorem reseq12i
StepHypRef Expression
1 reseqi.1 . . 3 𝐴 = 𝐵
21reseq1i 5362 . 2 (𝐴𝐶) = (𝐵𝐶)
3 reseqi.2 . . 3 𝐶 = 𝐷
43reseq2i 5363 . 2 (𝐵𝐶) = (𝐵𝐷)
52, 4eqtri 2643 1 (𝐴𝐶) = (𝐵𝐷)
 Colors of variables: wff setvar class Syntax hints:   = wceq 1480   ↾ cres 5086 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-v 3192  df-in 3567  df-opab 4684  df-xp 5090  df-res 5096 This theorem is referenced by:  cnvresid  5936  wfrlem5  7379  dfoi  8376  lubfval  16918  glbfval  16931  oduglb  17079  odulub  17081  dvlog  24331  dvlog2  24333  issubgr  26090  sitgclg  30227  frrlem5  31538  fourierdlem57  39717  fourierdlem74  39734  fourierdlem75  39735
 Copyright terms: Public domain W3C validator