Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  resfsupp Structured version   Visualization version   GIF version

Theorem resfsupp 8287
 Description: If the restriction of a function by a set which, subtracted from the domain of the function so that its difference is finitely supported, the function itself is finitely supported. (Contributed by AV, 27-May-2019.)
Hypotheses
Ref Expression
resfsupp.b (𝜑 → (dom 𝐹𝐵) ∈ Fin)
resfsupp.e (𝜑𝐹𝑊)
resfsupp.f (𝜑 → Fun 𝐹)
resfsupp.g (𝜑𝐺 = (𝐹𝐵))
resfsupp.s (𝜑𝐺 finSupp 𝑍)
resfsupp.z (𝜑𝑍𝑉)
Assertion
Ref Expression
resfsupp (𝜑𝐹 finSupp 𝑍)

Proof of Theorem resfsupp
StepHypRef Expression
1 resfsupp.b . . 3 (𝜑 → (dom 𝐹𝐵) ∈ Fin)
2 resfsupp.e . . 3 (𝜑𝐹𝑊)
3 resfsupp.g . . 3 (𝜑𝐺 = (𝐹𝐵))
4 resfsupp.s . . . 4 (𝜑𝐺 finSupp 𝑍)
54fsuppimpd 8267 . . 3 (𝜑 → (𝐺 supp 𝑍) ∈ Fin)
6 resfsupp.z . . 3 (𝜑𝑍𝑉)
71, 2, 3, 5, 6ressuppfi 8286 . 2 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
8 resfsupp.f . . 3 (𝜑 → Fun 𝐹)
9 funisfsupp 8265 . . 3 ((Fun 𝐹𝐹𝑊𝑍𝑉) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin))
108, 2, 6, 9syl3anc 1324 . 2 (𝜑 → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin))
117, 10mpbird 247 1 (𝜑𝐹 finSupp 𝑍)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   = wceq 1481   ∈ wcel 1988   ∖ cdif 3564   class class class wbr 4644  dom cdm 5104   ↾ cres 5106  Fun wfun 5870  (class class class)co 6635   supp csupp 7280  Fincfn 7940   finSupp cfsupp 8260 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-supp 7281  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-oadd 7549  df-er 7727  df-en 7941  df-fin 7944  df-fsupp 8261 This theorem is referenced by:  lincext2  42009
 Copyright terms: Public domain W3C validator