MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resfval2 Structured version   Visualization version   GIF version

Theorem resfval2 16754
Description: Value of the functor restriction operator. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
resfval.c (𝜑𝐹𝑉)
resfval.d (𝜑𝐻𝑊)
resfval2.g (𝜑𝐺𝑋)
resfval2.d (𝜑𝐻 Fn (𝑆 × 𝑆))
Assertion
Ref Expression
resfval2 (𝜑 → (⟨𝐹, 𝐺⟩ ↾f 𝐻) = ⟨(𝐹𝑆), (𝑥𝑆, 𝑦𝑆 ↦ ((𝑥𝐺𝑦) ↾ (𝑥𝐻𝑦)))⟩)
Distinct variable groups:   𝑥,𝐹   𝑥,𝑦,𝐺   𝑥,𝐻,𝑦   𝜑,𝑥   𝑥,𝑆,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝐹(𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem resfval2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 opex 5081 . . . 4 𝐹, 𝐺⟩ ∈ V
21a1i 11 . . 3 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ V)
3 resfval.d . . 3 (𝜑𝐻𝑊)
42, 3resfval 16753 . 2 (𝜑 → (⟨𝐹, 𝐺⟩ ↾f 𝐻) = ⟨((1st ‘⟨𝐹, 𝐺⟩) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘⟨𝐹, 𝐺⟩)‘𝑧) ↾ (𝐻𝑧)))⟩)
5 resfval.c . . . . 5 (𝜑𝐹𝑉)
6 resfval2.g . . . . 5 (𝜑𝐺𝑋)
7 op1stg 7345 . . . . 5 ((𝐹𝑉𝐺𝑋) → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
85, 6, 7syl2anc 696 . . . 4 (𝜑 → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
9 resfval2.d . . . . . . 7 (𝜑𝐻 Fn (𝑆 × 𝑆))
10 fndm 6151 . . . . . . 7 (𝐻 Fn (𝑆 × 𝑆) → dom 𝐻 = (𝑆 × 𝑆))
119, 10syl 17 . . . . . 6 (𝜑 → dom 𝐻 = (𝑆 × 𝑆))
1211dmeqd 5481 . . . . 5 (𝜑 → dom dom 𝐻 = dom (𝑆 × 𝑆))
13 dmxpid 5500 . . . . 5 dom (𝑆 × 𝑆) = 𝑆
1412, 13syl6eq 2810 . . . 4 (𝜑 → dom dom 𝐻 = 𝑆)
158, 14reseq12d 5552 . . 3 (𝜑 → ((1st ‘⟨𝐹, 𝐺⟩) ↾ dom dom 𝐻) = (𝐹𝑆))
16 op2ndg 7346 . . . . . . . 8 ((𝐹𝑉𝐺𝑋) → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
175, 6, 16syl2anc 696 . . . . . . 7 (𝜑 → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
1817fveq1d 6354 . . . . . 6 (𝜑 → ((2nd ‘⟨𝐹, 𝐺⟩)‘𝑧) = (𝐺𝑧))
1918reseq1d 5550 . . . . 5 (𝜑 → (((2nd ‘⟨𝐹, 𝐺⟩)‘𝑧) ↾ (𝐻𝑧)) = ((𝐺𝑧) ↾ (𝐻𝑧)))
2011, 19mpteq12dv 4885 . . . 4 (𝜑 → (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘⟨𝐹, 𝐺⟩)‘𝑧) ↾ (𝐻𝑧))) = (𝑧 ∈ (𝑆 × 𝑆) ↦ ((𝐺𝑧) ↾ (𝐻𝑧))))
21 fveq2 6352 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐺𝑧) = (𝐺‘⟨𝑥, 𝑦⟩))
22 df-ov 6816 . . . . . . 7 (𝑥𝐺𝑦) = (𝐺‘⟨𝑥, 𝑦⟩)
2321, 22syl6eqr 2812 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐺𝑧) = (𝑥𝐺𝑦))
24 fveq2 6352 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐻𝑧) = (𝐻‘⟨𝑥, 𝑦⟩))
25 df-ov 6816 . . . . . . 7 (𝑥𝐻𝑦) = (𝐻‘⟨𝑥, 𝑦⟩)
2624, 25syl6eqr 2812 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐻𝑧) = (𝑥𝐻𝑦))
2723, 26reseq12d 5552 . . . . 5 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐺𝑧) ↾ (𝐻𝑧)) = ((𝑥𝐺𝑦) ↾ (𝑥𝐻𝑦)))
2827mpt2mpt 6917 . . . 4 (𝑧 ∈ (𝑆 × 𝑆) ↦ ((𝐺𝑧) ↾ (𝐻𝑧))) = (𝑥𝑆, 𝑦𝑆 ↦ ((𝑥𝐺𝑦) ↾ (𝑥𝐻𝑦)))
2920, 28syl6eq 2810 . . 3 (𝜑 → (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘⟨𝐹, 𝐺⟩)‘𝑧) ↾ (𝐻𝑧))) = (𝑥𝑆, 𝑦𝑆 ↦ ((𝑥𝐺𝑦) ↾ (𝑥𝐻𝑦))))
3015, 29opeq12d 4561 . 2 (𝜑 → ⟨((1st ‘⟨𝐹, 𝐺⟩) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘⟨𝐹, 𝐺⟩)‘𝑧) ↾ (𝐻𝑧)))⟩ = ⟨(𝐹𝑆), (𝑥𝑆, 𝑦𝑆 ↦ ((𝑥𝐺𝑦) ↾ (𝑥𝐻𝑦)))⟩)
314, 30eqtrd 2794 1 (𝜑 → (⟨𝐹, 𝐺⟩ ↾f 𝐻) = ⟨(𝐹𝑆), (𝑥𝑆, 𝑦𝑆 ↦ ((𝑥𝐺𝑦) ↾ (𝑥𝐻𝑦)))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  wcel 2139  Vcvv 3340  cop 4327  cmpt 4881   × cxp 5264  dom cdm 5266  cres 5268   Fn wfn 6044  cfv 6049  (class class class)co 6813  cmpt2 6815  1st c1st 7331  2nd c2nd 7332  f cresf 16718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-iota 6012  df-fun 6051  df-fn 6052  df-fv 6057  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-1st 7333  df-2nd 7334  df-resf 16722
This theorem is referenced by:  funcrngcsetc  42508  funcringcsetc  42545
  Copyright terms: Public domain W3C validator