![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > residm | Structured version Visualization version GIF version |
Description: Idempotent law for restriction. (Contributed by NM, 27-Mar-1998.) |
Ref | Expression |
---|---|
residm | ⊢ ((𝐴 ↾ 𝐵) ↾ 𝐵) = (𝐴 ↾ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3761 | . 2 ⊢ 𝐵 ⊆ 𝐵 | |
2 | resabs2 5583 | . 2 ⊢ (𝐵 ⊆ 𝐵 → ((𝐴 ↾ 𝐵) ↾ 𝐵) = (𝐴 ↾ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝐴 ↾ 𝐵) ↾ 𝐵) = (𝐴 ↾ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1628 ⊆ wss 3711 ↾ cres 5264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-sep 4929 ax-nul 4937 ax-pr 5051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-rab 3055 df-v 3338 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-nul 4055 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-opab 4861 df-xp 5268 df-rel 5269 df-res 5274 |
This theorem is referenced by: resima 5585 dffv2 6429 fvsnun2 6609 qtopres 21699 bnj1253 31388 eldioph2lem1 37821 eldioph2lem2 37822 relexpiidm 38494 |
Copyright terms: Public domain | W3C validator |