MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resindi Structured version   Visualization version   GIF version

Theorem resindi 5376
Description: Class restriction distributes over intersection. (Contributed by FL, 6-Oct-2008.)
Assertion
Ref Expression
resindi (𝐴 ↾ (𝐵𝐶)) = ((𝐴𝐵) ∩ (𝐴𝐶))

Proof of Theorem resindi
StepHypRef Expression
1 xpindir 5221 . . . 4 ((𝐵𝐶) × V) = ((𝐵 × V) ∩ (𝐶 × V))
21ineq2i 3794 . . 3 (𝐴 ∩ ((𝐵𝐶) × V)) = (𝐴 ∩ ((𝐵 × V) ∩ (𝐶 × V)))
3 inindi 3813 . . 3 (𝐴 ∩ ((𝐵 × V) ∩ (𝐶 × V))) = ((𝐴 ∩ (𝐵 × V)) ∩ (𝐴 ∩ (𝐶 × V)))
42, 3eqtri 2643 . 2 (𝐴 ∩ ((𝐵𝐶) × V)) = ((𝐴 ∩ (𝐵 × V)) ∩ (𝐴 ∩ (𝐶 × V)))
5 df-res 5091 . 2 (𝐴 ↾ (𝐵𝐶)) = (𝐴 ∩ ((𝐵𝐶) × V))
6 df-res 5091 . . 3 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
7 df-res 5091 . . 3 (𝐴𝐶) = (𝐴 ∩ (𝐶 × V))
86, 7ineq12i 3795 . 2 ((𝐴𝐵) ∩ (𝐴𝐶)) = ((𝐴 ∩ (𝐵 × V)) ∩ (𝐴 ∩ (𝐶 × V)))
94, 5, 83eqtr4i 2653 1 (𝐴 ↾ (𝐵𝐶)) = ((𝐴𝐵) ∩ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1480  Vcvv 3189  cin 3558   × cxp 5077  cres 5081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pr 4872
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-rab 2916  df-v 3191  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-opab 4679  df-xp 5085  df-rel 5086  df-res 5091
This theorem is referenced by:  resindm  5408  gsum2dlem2  18302  fnresin  29297
  Copyright terms: Public domain W3C validator