Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  resindir Structured version   Visualization version   GIF version

Theorem resindir 5411
 Description: Class restriction distributes over intersection. (Contributed by NM, 18-Dec-2008.)
Assertion
Ref Expression
resindir ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ∩ (𝐵𝐶))

Proof of Theorem resindir
StepHypRef Expression
1 inindir 3829 . 2 ((𝐴𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ (𝐶 × V)) ∩ (𝐵 ∩ (𝐶 × V)))
2 df-res 5124 . 2 ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐵) ∩ (𝐶 × V))
3 df-res 5124 . . 3 (𝐴𝐶) = (𝐴 ∩ (𝐶 × V))
4 df-res 5124 . . 3 (𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
53, 4ineq12i 3810 . 2 ((𝐴𝐶) ∩ (𝐵𝐶)) = ((𝐴 ∩ (𝐶 × V)) ∩ (𝐵 ∩ (𝐶 × V)))
61, 2, 53eqtr4i 2653 1 ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ∩ (𝐵𝐶))
 Colors of variables: wff setvar class Syntax hints:   = wceq 1482  Vcvv 3198   ∩ cin 3571   × cxp 5110   ↾ cres 5114 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-v 3200  df-in 3579  df-res 5124 This theorem is referenced by:  inimass  5547  fnreseql  6325
 Copyright terms: Public domain W3C validator