MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resmhm2b Structured version   Visualization version   GIF version

Theorem resmhm2b 17981
Description: Restriction of the codomain of a homomorphism. (Contributed by Mario Carneiro, 18-Jun-2015.)
Hypothesis
Ref Expression
resmhm2.u 𝑈 = (𝑇s 𝑋)
Assertion
Ref Expression
resmhm2b ((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ 𝐹 ∈ (𝑆 MndHom 𝑈)))

Proof of Theorem resmhm2b
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmrcl1 17953 . . . 4 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑆 ∈ Mnd)
21adantl 484 . . 3 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝑆 ∈ Mnd)
3 resmhm2.u . . . . 5 𝑈 = (𝑇s 𝑋)
43submmnd 17972 . . . 4 (𝑋 ∈ (SubMnd‘𝑇) → 𝑈 ∈ Mnd)
54ad2antrr 724 . . 3 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝑈 ∈ Mnd)
6 eqid 2821 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
7 eqid 2821 . . . . . . . . 9 (Base‘𝑇) = (Base‘𝑇)
86, 7mhmf 17955 . . . . . . . 8 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
98adantl 484 . . . . . . 7 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
109ffnd 6509 . . . . . 6 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝐹 Fn (Base‘𝑆))
11 simplr 767 . . . . . 6 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → ran 𝐹𝑋)
12 df-f 6353 . . . . . 6 (𝐹:(Base‘𝑆)⟶𝑋 ↔ (𝐹 Fn (Base‘𝑆) ∧ ran 𝐹𝑋))
1310, 11, 12sylanbrc 585 . . . . 5 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝐹:(Base‘𝑆)⟶𝑋)
143submbas 17973 . . . . . . 7 (𝑋 ∈ (SubMnd‘𝑇) → 𝑋 = (Base‘𝑈))
1514ad2antrr 724 . . . . . 6 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝑋 = (Base‘𝑈))
1615feq3d 6495 . . . . 5 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → (𝐹:(Base‘𝑆)⟶𝑋𝐹:(Base‘𝑆)⟶(Base‘𝑈)))
1713, 16mpbid 234 . . . 4 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑈))
18 eqid 2821 . . . . . . . . 9 (+g𝑆) = (+g𝑆)
19 eqid 2821 . . . . . . . . 9 (+g𝑇) = (+g𝑇)
206, 18, 19mhmlin 17957 . . . . . . . 8 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
21203expb 1116 . . . . . . 7 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
2221adantll 712 . . . . . 6 ((((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
233, 19ressplusg 16606 . . . . . . . 8 (𝑋 ∈ (SubMnd‘𝑇) → (+g𝑇) = (+g𝑈))
2423ad3antrrr 728 . . . . . . 7 ((((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (+g𝑇) = (+g𝑈))
2524oveqd 7167 . . . . . 6 ((((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹𝑥)(+g𝑇)(𝐹𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
2622, 25eqtrd 2856 . . . . 5 ((((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
2726ralrimivva 3191 . . . 4 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
28 eqid 2821 . . . . . . 7 (0g𝑆) = (0g𝑆)
29 eqid 2821 . . . . . . 7 (0g𝑇) = (0g𝑇)
3028, 29mhm0 17958 . . . . . 6 (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹‘(0g𝑆)) = (0g𝑇))
3130adantl 484 . . . . 5 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → (𝐹‘(0g𝑆)) = (0g𝑇))
323, 29subm0 17974 . . . . . 6 (𝑋 ∈ (SubMnd‘𝑇) → (0g𝑇) = (0g𝑈))
3332ad2antrr 724 . . . . 5 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → (0g𝑇) = (0g𝑈))
3431, 33eqtrd 2856 . . . 4 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → (𝐹‘(0g𝑆)) = (0g𝑈))
3517, 27, 343jca 1124 . . 3 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → (𝐹:(Base‘𝑆)⟶(Base‘𝑈) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑈)))
36 eqid 2821 . . . 4 (Base‘𝑈) = (Base‘𝑈)
37 eqid 2821 . . . 4 (+g𝑈) = (+g𝑈)
38 eqid 2821 . . . 4 (0g𝑈) = (0g𝑈)
396, 36, 18, 37, 28, 38ismhm 17952 . . 3 (𝐹 ∈ (𝑆 MndHom 𝑈) ↔ ((𝑆 ∈ Mnd ∧ 𝑈 ∈ Mnd) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑈) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑈))))
402, 5, 35, 39syl21anbrc 1340 . 2 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝐹 ∈ (𝑆 MndHom 𝑈))
413resmhm2 17980 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → 𝐹 ∈ (𝑆 MndHom 𝑇))
4241ancoms 461 . . 3 ((𝑋 ∈ (SubMnd‘𝑇) ∧ 𝐹 ∈ (𝑆 MndHom 𝑈)) → 𝐹 ∈ (𝑆 MndHom 𝑇))
4342adantlr 713 . 2 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑈)) → 𝐹 ∈ (𝑆 MndHom 𝑇))
4440, 43impbida 799 1 ((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ 𝐹 ∈ (𝑆 MndHom 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  wss 3935  ran crn 5550   Fn wfn 6344  wf 6345  cfv 6349  (class class class)co 7150  Basecbs 16477  s cress 16478  +gcplusg 16559  0gc0g 16707  Mndcmnd 17905   MndHom cmhm 17948  SubMndcsubmnd 17949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mhm 17950  df-submnd 17951
This theorem is referenced by:  resghm2b  18370  m2cpmmhm  21347  dchrghm  25826  lgseisenlem4  25948
  Copyright terms: Public domain W3C validator