MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resqrtcl Structured version   Visualization version   GIF version

Theorem resqrtcl 14082
Description: Closure of the square root function. (Contributed by Mario Carneiro, 9-Jul-2013.)
Assertion
Ref Expression
resqrtcl ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℝ)

Proof of Theorem resqrtcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrex 14079 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃𝑦 ∈ ℝ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴))
2 simp1l 1158 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → 𝐴 ∈ ℝ)
3 recn 10107 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
4 sqrtval 14065 . . . . . 6 (𝐴 ∈ ℂ → (√‘𝐴) = (𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)))
52, 3, 43syl 18 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → (√‘𝐴) = (𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)))
6 simp3r 1163 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → (𝑦↑2) = 𝐴)
7 simp3l 1162 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → 0 ≤ 𝑦)
8 rere 13950 . . . . . . . . 9 (𝑦 ∈ ℝ → (ℜ‘𝑦) = 𝑦)
983ad2ant2 1126 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → (ℜ‘𝑦) = 𝑦)
107, 9breqtrrd 4756 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → 0 ≤ (ℜ‘𝑦))
11 rennim 14067 . . . . . . . 8 (𝑦 ∈ ℝ → (i · 𝑦) ∉ ℝ+)
12113ad2ant2 1126 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → (i · 𝑦) ∉ ℝ+)
136, 10, 123jca 1315 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))
14 recn 10107 . . . . . . . 8 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
15143ad2ant2 1126 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → 𝑦 ∈ ℂ)
16 resqreu 14081 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
17163ad2ant1 1125 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
18 oveq1 6740 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥↑2) = (𝑦↑2))
1918eqeq1d 2694 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑥↑2) = 𝐴 ↔ (𝑦↑2) = 𝐴))
20 fveq2 6272 . . . . . . . . . 10 (𝑥 = 𝑦 → (ℜ‘𝑥) = (ℜ‘𝑦))
2120breq2d 4740 . . . . . . . . 9 (𝑥 = 𝑦 → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘𝑦)))
22 oveq2 6741 . . . . . . . . . 10 (𝑥 = 𝑦 → (i · 𝑥) = (i · 𝑦))
23 neleq1 2972 . . . . . . . . . 10 ((i · 𝑥) = (i · 𝑦) → ((i · 𝑥) ∉ ℝ+ ↔ (i · 𝑦) ∉ ℝ+))
2422, 23syl 17 . . . . . . . . 9 (𝑥 = 𝑦 → ((i · 𝑥) ∉ ℝ+ ↔ (i · 𝑦) ∉ ℝ+))
2519, 21, 243anbi123d 1480 . . . . . . . 8 (𝑥 = 𝑦 → (((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)))
2625riota2 6716 . . . . . . 7 ((𝑦 ∈ ℂ ∧ ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) → (((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+) ↔ (𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) = 𝑦))
2715, 17, 26syl2anc 696 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → (((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+) ↔ (𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) = 𝑦))
2813, 27mpbid 222 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → (𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) = 𝑦)
295, 28eqtrd 2726 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → (√‘𝐴) = 𝑦)
30 simp2 1129 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → 𝑦 ∈ ℝ)
3129, 30eqeltrd 2771 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → (√‘𝐴) ∈ ℝ)
3231rexlimdv3a 3103 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (∃𝑦 ∈ ℝ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴) → (√‘𝐴) ∈ ℝ))
331, 32mpd 15 1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1564  wcel 2071  wnel 2967  wrex 2983  ∃!wreu 2984   class class class wbr 4728  cfv 5969  crio 6693  (class class class)co 6733  cc 10015  cr 10016  0cc0 10017  ici 10019   · cmul 10022  cle 10156  2c2 11151  +crp 11914  cexp 12943  cre 13925  csqrt 14061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1818  ax-5 1920  ax-6 1986  ax-7 2022  ax-8 2073  ax-9 2080  ax-10 2100  ax-11 2115  ax-12 2128  ax-13 2323  ax-ext 2672  ax-sep 4857  ax-nul 4865  ax-pow 4916  ax-pr 4979  ax-un 7034  ax-cnex 10073  ax-resscn 10074  ax-1cn 10075  ax-icn 10076  ax-addcl 10077  ax-addrcl 10078  ax-mulcl 10079  ax-mulrcl 10080  ax-mulcom 10081  ax-addass 10082  ax-mulass 10083  ax-distr 10084  ax-i2m1 10085  ax-1ne0 10086  ax-1rid 10087  ax-rnegex 10088  ax-rrecex 10089  ax-cnre 10090  ax-pre-lttri 10091  ax-pre-lttrn 10092  ax-pre-ltadd 10093  ax-pre-mulgt0 10094  ax-pre-sup 10095
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1567  df-ex 1786  df-nf 1791  df-sb 1979  df-eu 2543  df-mo 2544  df-clab 2679  df-cleq 2685  df-clel 2688  df-nfc 2823  df-ne 2865  df-nel 2968  df-ral 2987  df-rex 2988  df-reu 2989  df-rmo 2990  df-rab 2991  df-v 3274  df-sbc 3510  df-csb 3608  df-dif 3651  df-un 3653  df-in 3655  df-ss 3662  df-pss 3664  df-nul 3992  df-if 4163  df-pw 4236  df-sn 4254  df-pr 4256  df-tp 4258  df-op 4260  df-uni 4513  df-iun 4598  df-br 4729  df-opab 4789  df-mpt 4806  df-tr 4829  df-id 5096  df-eprel 5101  df-po 5107  df-so 5108  df-fr 5145  df-we 5147  df-xp 5192  df-rel 5193  df-cnv 5194  df-co 5195  df-dm 5196  df-rn 5197  df-res 5198  df-ima 5199  df-pred 5761  df-ord 5807  df-on 5808  df-lim 5809  df-suc 5810  df-iota 5932  df-fun 5971  df-fn 5972  df-f 5973  df-f1 5974  df-fo 5975  df-f1o 5976  df-fv 5977  df-riota 6694  df-ov 6736  df-oprab 6737  df-mpt2 6738  df-om 7151  df-2nd 7254  df-wrecs 7495  df-recs 7556  df-rdg 7594  df-er 7830  df-en 8041  df-dom 8042  df-sdom 8043  df-sup 8432  df-pnf 10157  df-mnf 10158  df-xr 10159  df-ltxr 10160  df-le 10161  df-sub 10349  df-neg 10350  df-div 10766  df-nn 11102  df-2 11160  df-3 11161  df-n0 11374  df-z 11459  df-uz 11769  df-rp 11915  df-seq 12885  df-exp 12944  df-cj 13927  df-re 13928  df-im 13929  df-sqrt 14063
This theorem is referenced by:  resqrtthlem  14083  remsqsqrt  14085  sqrtge0  14086  sqrtgt0  14087  sqrtmul  14088  sqrtle  14089  sqrtlt  14090  sqrt11  14091  rpsqrtcl  14093  sqrtdiv  14094  sqrtneglem  14095  sqrtneg  14096  sqrtsq2  14097  abscl  14106  sqreulem  14187  sqreu  14188  amgm2  14197  sqrtcli  14199  resqrtcld  14244  resqrtcn  24578  loglesqrt  24587  1cubrlem  24656  ftc1anclem3  33687  sqrtpwpw2p  41845  flsqrt  41903
  Copyright terms: Public domain W3C validator