MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resqrtcld Structured version   Visualization version   GIF version

Theorem resqrtcld 14355
Description: The square root of a nonnegative real is a real. (Contributed by Mario Carneiro, 29-May-2016.)
Hypotheses
Ref Expression
resqrcld.1 (𝜑𝐴 ∈ ℝ)
resqrcld.2 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrtcld (𝜑 → (√‘𝐴) ∈ ℝ)

Proof of Theorem resqrtcld
StepHypRef Expression
1 resqrcld.1 . 2 (𝜑𝐴 ∈ ℝ)
2 resqrcld.2 . 2 (𝜑 → 0 ≤ 𝐴)
3 resqrtcl 14193 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℝ)
41, 2, 3syl2anc 696 1 (𝜑 → (√‘𝐴) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2139   class class class wbr 4804  cfv 6049  cr 10127  0cc0 10128  cle 10267  csqrt 14172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-sup 8513  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-z 11570  df-uz 11880  df-rp 12026  df-seq 12996  df-exp 13055  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174
This theorem is referenced by:  isprm7  15622  nonsq  15669  ipcau2  23233  tchcphlem1  23234  tchcph  23236  rrxcph  23380  trirn  23383  rrxmet  23391  rrxdstprj1  23392  minveclem3b  23399  atans2  24857  chpub  25144  bposlem4  25211  bposlem5  25212  bposlem6  25213  bposlem9  25216  chpchtlim  25367  axsegconlem4  25999  ax5seglem3  26010  normf  28289  normgt0  28293  sqsscirc1  30263  hgt750lemd  31035  hgt750lem  31038  hgt750leme  31045  tgoldbachgtde  31047  sin2h  33712  cos2h  33713  dvasin  33809  areacirclem4  33816  areacirclem5  33817  areacirc  33818  rrnmet  33941  rrndstprj1  33942  rrndstprj2  33943  rrnequiv  33947  rrntotbnd  33948  pellexlem2  37896  pellexlem5  37899  pell14qrgt0  37925  pell1qrge1  37936  stirlingr  40810  rrndistlt  41013  qndenserrnbllem  41017  hoiqssbllem2  41343  sqrtpwpw2p  41960
  Copyright terms: Public domain W3C validator