![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resqrtcld | Structured version Visualization version GIF version |
Description: The square root of a nonnegative real is a real. (Contributed by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
resqrcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
resqrcld.2 | ⊢ (𝜑 → 0 ≤ 𝐴) |
Ref | Expression |
---|---|
resqrtcld | ⊢ (𝜑 → (√‘𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resqrcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | resqrcld.2 | . 2 ⊢ (𝜑 → 0 ≤ 𝐴) | |
3 | resqrtcl 14193 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℝ) | |
4 | 1, 2, 3 | syl2anc 696 | 1 ⊢ (𝜑 → (√‘𝐴) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2139 class class class wbr 4804 ‘cfv 6049 ℝcr 10127 0cc0 10128 ≤ cle 10267 √csqrt 14172 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-pre-sup 10206 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-sup 8513 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-nn 11213 df-2 11271 df-3 11272 df-n0 11485 df-z 11570 df-uz 11880 df-rp 12026 df-seq 12996 df-exp 13055 df-cj 14038 df-re 14039 df-im 14040 df-sqrt 14174 |
This theorem is referenced by: isprm7 15622 nonsq 15669 ipcau2 23233 tchcphlem1 23234 tchcph 23236 rrxcph 23380 trirn 23383 rrxmet 23391 rrxdstprj1 23392 minveclem3b 23399 atans2 24857 chpub 25144 bposlem4 25211 bposlem5 25212 bposlem6 25213 bposlem9 25216 chpchtlim 25367 axsegconlem4 25999 ax5seglem3 26010 normf 28289 normgt0 28293 sqsscirc1 30263 hgt750lemd 31035 hgt750lem 31038 hgt750leme 31045 tgoldbachgtde 31047 sin2h 33712 cos2h 33713 dvasin 33809 areacirclem4 33816 areacirclem5 33817 areacirc 33818 rrnmet 33941 rrndstprj1 33942 rrndstprj2 33943 rrnequiv 33947 rrntotbnd 33948 pellexlem2 37896 pellexlem5 37899 pell14qrgt0 37925 pell1qrge1 37936 stirlingr 40810 rrndistlt 41013 qndenserrnbllem 41017 hoiqssbllem2 41343 sqrtpwpw2p 41960 |
Copyright terms: Public domain | W3C validator |