MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resrhm Structured version   Visualization version   GIF version

Theorem resrhm 19566
Description: Restriction of a ring homomorphism to a subring is a homomorphism. (Contributed by Mario Carneiro, 12-Mar-2015.)
Hypothesis
Ref Expression
resrhm.u 𝑈 = (𝑆s 𝑋)
Assertion
Ref Expression
resrhm ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝐹𝑋) ∈ (𝑈 RingHom 𝑇))

Proof of Theorem resrhm
StepHypRef Expression
1 rhmrcl2 19474 . . 3 (𝐹 ∈ (𝑆 RingHom 𝑇) → 𝑇 ∈ Ring)
2 resrhm.u . . . 4 𝑈 = (𝑆s 𝑋)
32subrgring 19540 . . 3 (𝑋 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring)
41, 3anim12ci 615 . 2 ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝑈 ∈ Ring ∧ 𝑇 ∈ Ring))
5 rhmghm 19479 . . . 4 (𝐹 ∈ (𝑆 RingHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
6 subrgsubg 19543 . . . 4 (𝑋 ∈ (SubRing‘𝑆) → 𝑋 ∈ (SubGrp‘𝑆))
72resghm 18376 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹𝑋) ∈ (𝑈 GrpHom 𝑇))
85, 6, 7syl2an 597 . . 3 ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝐹𝑋) ∈ (𝑈 GrpHom 𝑇))
9 eqid 2823 . . . . . 6 (mulGrp‘𝑆) = (mulGrp‘𝑆)
10 eqid 2823 . . . . . 6 (mulGrp‘𝑇) = (mulGrp‘𝑇)
119, 10rhmmhm 19476 . . . . 5 (𝐹 ∈ (𝑆 RingHom 𝑇) → 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)))
129subrgsubm 19550 . . . . 5 (𝑋 ∈ (SubRing‘𝑆) → 𝑋 ∈ (SubMnd‘(mulGrp‘𝑆)))
13 eqid 2823 . . . . . 6 ((mulGrp‘𝑆) ↾s 𝑋) = ((mulGrp‘𝑆) ↾s 𝑋)
1413resmhm 17987 . . . . 5 ((𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)) ∧ 𝑋 ∈ (SubMnd‘(mulGrp‘𝑆))) → (𝐹𝑋) ∈ (((mulGrp‘𝑆) ↾s 𝑋) MndHom (mulGrp‘𝑇)))
1511, 12, 14syl2an 597 . . . 4 ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝐹𝑋) ∈ (((mulGrp‘𝑆) ↾s 𝑋) MndHom (mulGrp‘𝑇)))
16 rhmrcl1 19473 . . . . . 6 (𝐹 ∈ (𝑆 RingHom 𝑇) → 𝑆 ∈ Ring)
172, 9mgpress 19252 . . . . . 6 ((𝑆 ∈ Ring ∧ 𝑋 ∈ (SubRing‘𝑆)) → ((mulGrp‘𝑆) ↾s 𝑋) = (mulGrp‘𝑈))
1816, 17sylan 582 . . . . 5 ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → ((mulGrp‘𝑆) ↾s 𝑋) = (mulGrp‘𝑈))
1918oveq1d 7173 . . . 4 ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (((mulGrp‘𝑆) ↾s 𝑋) MndHom (mulGrp‘𝑇)) = ((mulGrp‘𝑈) MndHom (mulGrp‘𝑇)))
2015, 19eleqtrd 2917 . . 3 ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝐹𝑋) ∈ ((mulGrp‘𝑈) MndHom (mulGrp‘𝑇)))
218, 20jca 514 . 2 ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → ((𝐹𝑋) ∈ (𝑈 GrpHom 𝑇) ∧ (𝐹𝑋) ∈ ((mulGrp‘𝑈) MndHom (mulGrp‘𝑇))))
22 eqid 2823 . . 3 (mulGrp‘𝑈) = (mulGrp‘𝑈)
2322, 10isrhm 19475 . 2 ((𝐹𝑋) ∈ (𝑈 RingHom 𝑇) ↔ ((𝑈 ∈ Ring ∧ 𝑇 ∈ Ring) ∧ ((𝐹𝑋) ∈ (𝑈 GrpHom 𝑇) ∧ (𝐹𝑋) ∈ ((mulGrp‘𝑈) MndHom (mulGrp‘𝑇)))))
244, 21, 23sylanbrc 585 1 ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝐹𝑋) ∈ (𝑈 RingHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  cres 5559  cfv 6357  (class class class)co 7158  s cress 16486   MndHom cmhm 17956  SubMndcsubmnd 17957  SubGrpcsubg 18275   GrpHom cghm 18357  mulGrpcmgp 19241  Ringcrg 19299   RingHom crh 19466  SubRingcsubrg 19533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958  df-submnd 17959  df-grp 18108  df-subg 18278  df-ghm 18358  df-mgp 19242  df-ur 19254  df-ring 19301  df-rnghom 19469  df-subrg 19535
This theorem is referenced by:  evlsval2  20302
  Copyright terms: Public domain W3C validator