MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resscntz Structured version   Visualization version   GIF version

Theorem resscntz 17680
Description: Centralizer in a substructure. (Contributed by Mario Carneiro, 3-Oct-2015.)
Hypotheses
Ref Expression
resscntz.p 𝐻 = (𝐺s 𝐴)
resscntz.z 𝑍 = (Cntz‘𝐺)
resscntz.y 𝑌 = (Cntz‘𝐻)
Assertion
Ref Expression
resscntz ((𝐴𝑉𝑆𝐴) → (𝑌𝑆) = ((𝑍𝑆) ∩ 𝐴))

Proof of Theorem resscntz
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2626 . . . . . . 7 (Base‘𝐻) = (Base‘𝐻)
2 resscntz.y . . . . . . 7 𝑌 = (Cntz‘𝐻)
31, 2cntzrcl 17676 . . . . . 6 (𝑥 ∈ (𝑌𝑆) → (𝐻 ∈ V ∧ 𝑆 ⊆ (Base‘𝐻)))
43simprd 479 . . . . 5 (𝑥 ∈ (𝑌𝑆) → 𝑆 ⊆ (Base‘𝐻))
5 resscntz.p . . . . . 6 𝐻 = (𝐺s 𝐴)
6 eqid 2626 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
75, 6ressbasss 15848 . . . . 5 (Base‘𝐻) ⊆ (Base‘𝐺)
84, 7syl6ss 3600 . . . 4 (𝑥 ∈ (𝑌𝑆) → 𝑆 ⊆ (Base‘𝐺))
98a1i 11 . . 3 ((𝐴𝑉𝑆𝐴) → (𝑥 ∈ (𝑌𝑆) → 𝑆 ⊆ (Base‘𝐺)))
10 inss1 3816 . . . . . 6 ((𝑍𝑆) ∩ 𝐴) ⊆ (𝑍𝑆)
1110sseli 3584 . . . . 5 (𝑥 ∈ ((𝑍𝑆) ∩ 𝐴) → 𝑥 ∈ (𝑍𝑆))
12 resscntz.z . . . . . . 7 𝑍 = (Cntz‘𝐺)
136, 12cntzrcl 17676 . . . . . 6 (𝑥 ∈ (𝑍𝑆) → (𝐺 ∈ V ∧ 𝑆 ⊆ (Base‘𝐺)))
1413simprd 479 . . . . 5 (𝑥 ∈ (𝑍𝑆) → 𝑆 ⊆ (Base‘𝐺))
1511, 14syl 17 . . . 4 (𝑥 ∈ ((𝑍𝑆) ∩ 𝐴) → 𝑆 ⊆ (Base‘𝐺))
1615a1i 11 . . 3 ((𝐴𝑉𝑆𝐴) → (𝑥 ∈ ((𝑍𝑆) ∩ 𝐴) → 𝑆 ⊆ (Base‘𝐺)))
17 anass 680 . . . . . 6 (((𝑥𝐴𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)) ↔ (𝑥𝐴 ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
18 elin 3779 . . . . . . . . 9 (𝑥 ∈ (𝐴 ∩ (Base‘𝐺)) ↔ (𝑥𝐴𝑥 ∈ (Base‘𝐺)))
195, 6ressbas 15846 . . . . . . . . . 10 (𝐴𝑉 → (𝐴 ∩ (Base‘𝐺)) = (Base‘𝐻))
2019eleq2d 2689 . . . . . . . . 9 (𝐴𝑉 → (𝑥 ∈ (𝐴 ∩ (Base‘𝐺)) ↔ 𝑥 ∈ (Base‘𝐻)))
2118, 20syl5bbr 274 . . . . . . . 8 (𝐴𝑉 → ((𝑥𝐴𝑥 ∈ (Base‘𝐺)) ↔ 𝑥 ∈ (Base‘𝐻)))
22 eqid 2626 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
235, 22ressplusg 15909 . . . . . . . . . . 11 (𝐴𝑉 → (+g𝐺) = (+g𝐻))
2423oveqd 6622 . . . . . . . . . 10 (𝐴𝑉 → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
2523oveqd 6622 . . . . . . . . . 10 (𝐴𝑉 → (𝑦(+g𝐺)𝑥) = (𝑦(+g𝐻)𝑥))
2624, 25eqeq12d 2641 . . . . . . . . 9 (𝐴𝑉 → ((𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)))
2726ralbidv 2985 . . . . . . . 8 (𝐴𝑉 → (∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ ∀𝑦𝑆 (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)))
2821, 27anbi12d 746 . . . . . . 7 (𝐴𝑉 → (((𝑥𝐴𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)) ↔ (𝑥 ∈ (Base‘𝐻) ∧ ∀𝑦𝑆 (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥))))
2928ad2antrr 761 . . . . . 6 (((𝐴𝑉𝑆𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → (((𝑥𝐴𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)) ↔ (𝑥 ∈ (Base‘𝐻) ∧ ∀𝑦𝑆 (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥))))
3017, 29syl5rbbr 275 . . . . 5 (((𝐴𝑉𝑆𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → ((𝑥 ∈ (Base‘𝐻) ∧ ∀𝑦𝑆 (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)) ↔ (𝑥𝐴 ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))))
31 ssin 3818 . . . . . . . . 9 ((𝑆𝐴𝑆 ⊆ (Base‘𝐺)) ↔ 𝑆 ⊆ (𝐴 ∩ (Base‘𝐺)))
3219sseq2d 3617 . . . . . . . . 9 (𝐴𝑉 → (𝑆 ⊆ (𝐴 ∩ (Base‘𝐺)) ↔ 𝑆 ⊆ (Base‘𝐻)))
3331, 32syl5bb 272 . . . . . . . 8 (𝐴𝑉 → ((𝑆𝐴𝑆 ⊆ (Base‘𝐺)) ↔ 𝑆 ⊆ (Base‘𝐻)))
3433biimpd 219 . . . . . . 7 (𝐴𝑉 → ((𝑆𝐴𝑆 ⊆ (Base‘𝐺)) → 𝑆 ⊆ (Base‘𝐻)))
3534impl 649 . . . . . 6 (((𝐴𝑉𝑆𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → 𝑆 ⊆ (Base‘𝐻))
36 eqid 2626 . . . . . . 7 (+g𝐻) = (+g𝐻)
371, 36, 2elcntz 17671 . . . . . 6 (𝑆 ⊆ (Base‘𝐻) → (𝑥 ∈ (𝑌𝑆) ↔ (𝑥 ∈ (Base‘𝐻) ∧ ∀𝑦𝑆 (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥))))
3835, 37syl 17 . . . . 5 (((𝐴𝑉𝑆𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑥 ∈ (𝑌𝑆) ↔ (𝑥 ∈ (Base‘𝐻) ∧ ∀𝑦𝑆 (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥))))
39 elin 3779 . . . . . . 7 (𝑥 ∈ ((𝑍𝑆) ∩ 𝐴) ↔ (𝑥 ∈ (𝑍𝑆) ∧ 𝑥𝐴))
40 ancom 466 . . . . . . 7 ((𝑥 ∈ (𝑍𝑆) ∧ 𝑥𝐴) ↔ (𝑥𝐴𝑥 ∈ (𝑍𝑆)))
4139, 40bitri 264 . . . . . 6 (𝑥 ∈ ((𝑍𝑆) ∩ 𝐴) ↔ (𝑥𝐴𝑥 ∈ (𝑍𝑆)))
426, 22, 12elcntz 17671 . . . . . . . 8 (𝑆 ⊆ (Base‘𝐺) → (𝑥 ∈ (𝑍𝑆) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
4342adantl 482 . . . . . . 7 (((𝐴𝑉𝑆𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑥 ∈ (𝑍𝑆) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
4443anbi2d 739 . . . . . 6 (((𝐴𝑉𝑆𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → ((𝑥𝐴𝑥 ∈ (𝑍𝑆)) ↔ (𝑥𝐴 ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))))
4541, 44syl5bb 272 . . . . 5 (((𝐴𝑉𝑆𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑥 ∈ ((𝑍𝑆) ∩ 𝐴) ↔ (𝑥𝐴 ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))))
4630, 38, 453bitr4d 300 . . . 4 (((𝐴𝑉𝑆𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑥 ∈ (𝑌𝑆) ↔ 𝑥 ∈ ((𝑍𝑆) ∩ 𝐴)))
4746ex 450 . . 3 ((𝐴𝑉𝑆𝐴) → (𝑆 ⊆ (Base‘𝐺) → (𝑥 ∈ (𝑌𝑆) ↔ 𝑥 ∈ ((𝑍𝑆) ∩ 𝐴))))
489, 16, 47pm5.21ndd 369 . 2 ((𝐴𝑉𝑆𝐴) → (𝑥 ∈ (𝑌𝑆) ↔ 𝑥 ∈ ((𝑍𝑆) ∩ 𝐴)))
4948eqrdv 2624 1 ((𝐴𝑉𝑆𝐴) → (𝑌𝑆) = ((𝑍𝑆) ∩ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1992  wral 2912  Vcvv 3191  cin 3559  wss 3560  cfv 5850  (class class class)co 6605  Basecbs 15776  s cress 15777  +gcplusg 15857  Cntzccntz 17664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-2 11024  df-ndx 15779  df-slot 15780  df-base 15781  df-sets 15782  df-ress 15783  df-plusg 15870  df-cntz 17666
This theorem is referenced by:  gsumzsubmcl  18234  subgdmdprd  18349  cntzsdrg  37239
  Copyright terms: Public domain W3C validator