MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resscntz Structured version   Visualization version   GIF version

Theorem resscntz 17810
Description: Centralizer in a substructure. (Contributed by Mario Carneiro, 3-Oct-2015.)
Hypotheses
Ref Expression
resscntz.p 𝐻 = (𝐺s 𝐴)
resscntz.z 𝑍 = (Cntz‘𝐺)
resscntz.y 𝑌 = (Cntz‘𝐻)
Assertion
Ref Expression
resscntz ((𝐴𝑉𝑆𝐴) → (𝑌𝑆) = ((𝑍𝑆) ∩ 𝐴))

Proof of Theorem resscntz
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2651 . . . . . . 7 (Base‘𝐻) = (Base‘𝐻)
2 resscntz.y . . . . . . 7 𝑌 = (Cntz‘𝐻)
31, 2cntzrcl 17806 . . . . . 6 (𝑥 ∈ (𝑌𝑆) → (𝐻 ∈ V ∧ 𝑆 ⊆ (Base‘𝐻)))
43simprd 478 . . . . 5 (𝑥 ∈ (𝑌𝑆) → 𝑆 ⊆ (Base‘𝐻))
5 resscntz.p . . . . . 6 𝐻 = (𝐺s 𝐴)
6 eqid 2651 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
75, 6ressbasss 15979 . . . . 5 (Base‘𝐻) ⊆ (Base‘𝐺)
84, 7syl6ss 3648 . . . 4 (𝑥 ∈ (𝑌𝑆) → 𝑆 ⊆ (Base‘𝐺))
98a1i 11 . . 3 ((𝐴𝑉𝑆𝐴) → (𝑥 ∈ (𝑌𝑆) → 𝑆 ⊆ (Base‘𝐺)))
10 inss1 3866 . . . . . 6 ((𝑍𝑆) ∩ 𝐴) ⊆ (𝑍𝑆)
1110sseli 3632 . . . . 5 (𝑥 ∈ ((𝑍𝑆) ∩ 𝐴) → 𝑥 ∈ (𝑍𝑆))
12 resscntz.z . . . . . . 7 𝑍 = (Cntz‘𝐺)
136, 12cntzrcl 17806 . . . . . 6 (𝑥 ∈ (𝑍𝑆) → (𝐺 ∈ V ∧ 𝑆 ⊆ (Base‘𝐺)))
1413simprd 478 . . . . 5 (𝑥 ∈ (𝑍𝑆) → 𝑆 ⊆ (Base‘𝐺))
1511, 14syl 17 . . . 4 (𝑥 ∈ ((𝑍𝑆) ∩ 𝐴) → 𝑆 ⊆ (Base‘𝐺))
1615a1i 11 . . 3 ((𝐴𝑉𝑆𝐴) → (𝑥 ∈ ((𝑍𝑆) ∩ 𝐴) → 𝑆 ⊆ (Base‘𝐺)))
17 anass 682 . . . . . 6 (((𝑥𝐴𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)) ↔ (𝑥𝐴 ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
18 elin 3829 . . . . . . . . 9 (𝑥 ∈ (𝐴 ∩ (Base‘𝐺)) ↔ (𝑥𝐴𝑥 ∈ (Base‘𝐺)))
195, 6ressbas 15977 . . . . . . . . . 10 (𝐴𝑉 → (𝐴 ∩ (Base‘𝐺)) = (Base‘𝐻))
2019eleq2d 2716 . . . . . . . . 9 (𝐴𝑉 → (𝑥 ∈ (𝐴 ∩ (Base‘𝐺)) ↔ 𝑥 ∈ (Base‘𝐻)))
2118, 20syl5bbr 274 . . . . . . . 8 (𝐴𝑉 → ((𝑥𝐴𝑥 ∈ (Base‘𝐺)) ↔ 𝑥 ∈ (Base‘𝐻)))
22 eqid 2651 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
235, 22ressplusg 16040 . . . . . . . . . . 11 (𝐴𝑉 → (+g𝐺) = (+g𝐻))
2423oveqd 6707 . . . . . . . . . 10 (𝐴𝑉 → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
2523oveqd 6707 . . . . . . . . . 10 (𝐴𝑉 → (𝑦(+g𝐺)𝑥) = (𝑦(+g𝐻)𝑥))
2624, 25eqeq12d 2666 . . . . . . . . 9 (𝐴𝑉 → ((𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)))
2726ralbidv 3015 . . . . . . . 8 (𝐴𝑉 → (∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ ∀𝑦𝑆 (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)))
2821, 27anbi12d 747 . . . . . . 7 (𝐴𝑉 → (((𝑥𝐴𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)) ↔ (𝑥 ∈ (Base‘𝐻) ∧ ∀𝑦𝑆 (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥))))
2928ad2antrr 762 . . . . . 6 (((𝐴𝑉𝑆𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → (((𝑥𝐴𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)) ↔ (𝑥 ∈ (Base‘𝐻) ∧ ∀𝑦𝑆 (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥))))
3017, 29syl5rbbr 275 . . . . 5 (((𝐴𝑉𝑆𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → ((𝑥 ∈ (Base‘𝐻) ∧ ∀𝑦𝑆 (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)) ↔ (𝑥𝐴 ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))))
31 ssin 3868 . . . . . . . . 9 ((𝑆𝐴𝑆 ⊆ (Base‘𝐺)) ↔ 𝑆 ⊆ (𝐴 ∩ (Base‘𝐺)))
3219sseq2d 3666 . . . . . . . . 9 (𝐴𝑉 → (𝑆 ⊆ (𝐴 ∩ (Base‘𝐺)) ↔ 𝑆 ⊆ (Base‘𝐻)))
3331, 32syl5bb 272 . . . . . . . 8 (𝐴𝑉 → ((𝑆𝐴𝑆 ⊆ (Base‘𝐺)) ↔ 𝑆 ⊆ (Base‘𝐻)))
3433biimpd 219 . . . . . . 7 (𝐴𝑉 → ((𝑆𝐴𝑆 ⊆ (Base‘𝐺)) → 𝑆 ⊆ (Base‘𝐻)))
3534impl 649 . . . . . 6 (((𝐴𝑉𝑆𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → 𝑆 ⊆ (Base‘𝐻))
36 eqid 2651 . . . . . . 7 (+g𝐻) = (+g𝐻)
371, 36, 2elcntz 17801 . . . . . 6 (𝑆 ⊆ (Base‘𝐻) → (𝑥 ∈ (𝑌𝑆) ↔ (𝑥 ∈ (Base‘𝐻) ∧ ∀𝑦𝑆 (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥))))
3835, 37syl 17 . . . . 5 (((𝐴𝑉𝑆𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑥 ∈ (𝑌𝑆) ↔ (𝑥 ∈ (Base‘𝐻) ∧ ∀𝑦𝑆 (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥))))
39 elin 3829 . . . . . . 7 (𝑥 ∈ ((𝑍𝑆) ∩ 𝐴) ↔ (𝑥 ∈ (𝑍𝑆) ∧ 𝑥𝐴))
40 ancom 465 . . . . . . 7 ((𝑥 ∈ (𝑍𝑆) ∧ 𝑥𝐴) ↔ (𝑥𝐴𝑥 ∈ (𝑍𝑆)))
4139, 40bitri 264 . . . . . 6 (𝑥 ∈ ((𝑍𝑆) ∩ 𝐴) ↔ (𝑥𝐴𝑥 ∈ (𝑍𝑆)))
426, 22, 12elcntz 17801 . . . . . . . 8 (𝑆 ⊆ (Base‘𝐺) → (𝑥 ∈ (𝑍𝑆) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
4342adantl 481 . . . . . . 7 (((𝐴𝑉𝑆𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑥 ∈ (𝑍𝑆) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
4443anbi2d 740 . . . . . 6 (((𝐴𝑉𝑆𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → ((𝑥𝐴𝑥 ∈ (𝑍𝑆)) ↔ (𝑥𝐴 ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))))
4541, 44syl5bb 272 . . . . 5 (((𝐴𝑉𝑆𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑥 ∈ ((𝑍𝑆) ∩ 𝐴) ↔ (𝑥𝐴 ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))))
4630, 38, 453bitr4d 300 . . . 4 (((𝐴𝑉𝑆𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑥 ∈ (𝑌𝑆) ↔ 𝑥 ∈ ((𝑍𝑆) ∩ 𝐴)))
4746ex 449 . . 3 ((𝐴𝑉𝑆𝐴) → (𝑆 ⊆ (Base‘𝐺) → (𝑥 ∈ (𝑌𝑆) ↔ 𝑥 ∈ ((𝑍𝑆) ∩ 𝐴))))
489, 16, 47pm5.21ndd 368 . 2 ((𝐴𝑉𝑆𝐴) → (𝑥 ∈ (𝑌𝑆) ↔ 𝑥 ∈ ((𝑍𝑆) ∩ 𝐴)))
4948eqrdv 2649 1 ((𝐴𝑉𝑆𝐴) → (𝑌𝑆) = ((𝑍𝑆) ∩ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wral 2941  Vcvv 3231  cin 3606  wss 3607  cfv 5926  (class class class)co 6690  Basecbs 15904  s cress 15905  +gcplusg 15988  Cntzccntz 17794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-cntz 17796
This theorem is referenced by:  gsumzsubmcl  18364  subgdmdprd  18479  cntzsdrg  38089
  Copyright terms: Public domain W3C validator