Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressinbas Structured version   Visualization version   GIF version

Theorem ressinbas 15852
 Description: Restriction only cares about the part of the second set which intersects the base of the first. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Hypothesis
Ref Expression
ressid.1 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
ressinbas (𝐴𝑋 → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))

Proof of Theorem ressinbas
StepHypRef Expression
1 elex 3203 . 2 (𝐴𝑋𝐴 ∈ V)
2 eqid 2626 . . . . . . 7 (𝑊s 𝐴) = (𝑊s 𝐴)
3 ressid.1 . . . . . . 7 𝐵 = (Base‘𝑊)
42, 3ressid2 15844 . . . . . 6 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴 ∈ V) → (𝑊s 𝐴) = 𝑊)
5 ssid 3608 . . . . . . . 8 𝐵𝐵
6 incom 3788 . . . . . . . . 9 (𝐴𝐵) = (𝐵𝐴)
7 df-ss 3574 . . . . . . . . . 10 (𝐵𝐴 ↔ (𝐵𝐴) = 𝐵)
87biimpi 206 . . . . . . . . 9 (𝐵𝐴 → (𝐵𝐴) = 𝐵)
96, 8syl5eq 2672 . . . . . . . 8 (𝐵𝐴 → (𝐴𝐵) = 𝐵)
105, 9syl5sseqr 3638 . . . . . . 7 (𝐵𝐴𝐵 ⊆ (𝐴𝐵))
11 elex 3203 . . . . . . 7 (𝑊 ∈ V → 𝑊 ∈ V)
12 inex1g 4766 . . . . . . 7 (𝐴 ∈ V → (𝐴𝐵) ∈ V)
13 eqid 2626 . . . . . . . 8 (𝑊s (𝐴𝐵)) = (𝑊s (𝐴𝐵))
1413, 3ressid2 15844 . . . . . . 7 ((𝐵 ⊆ (𝐴𝐵) ∧ 𝑊 ∈ V ∧ (𝐴𝐵) ∈ V) → (𝑊s (𝐴𝐵)) = 𝑊)
1510, 11, 12, 14syl3an 1365 . . . . . 6 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴 ∈ V) → (𝑊s (𝐴𝐵)) = 𝑊)
164, 15eqtr4d 2663 . . . . 5 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴 ∈ V) → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
17163expb 1263 . . . 4 ((𝐵𝐴 ∧ (𝑊 ∈ V ∧ 𝐴 ∈ V)) → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
18 inass 3806 . . . . . . . . 9 ((𝐴𝐵) ∩ 𝐵) = (𝐴 ∩ (𝐵𝐵))
19 inidm 3805 . . . . . . . . . 10 (𝐵𝐵) = 𝐵
2019ineq2i 3794 . . . . . . . . 9 (𝐴 ∩ (𝐵𝐵)) = (𝐴𝐵)
2118, 20eqtr2i 2649 . . . . . . . 8 (𝐴𝐵) = ((𝐴𝐵) ∩ 𝐵)
2221opeq2i 4379 . . . . . . 7 ⟨(Base‘ndx), (𝐴𝐵)⟩ = ⟨(Base‘ndx), ((𝐴𝐵) ∩ 𝐵)⟩
2322oveq2i 6616 . . . . . 6 (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ 𝐵)⟩)
242, 3ressval2 15845 . . . . . 6 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴 ∈ V) → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))
25 inss1 3816 . . . . . . . . 9 (𝐴𝐵) ⊆ 𝐴
26 sstr 3596 . . . . . . . . 9 ((𝐵 ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ⊆ 𝐴) → 𝐵𝐴)
2725, 26mpan2 706 . . . . . . . 8 (𝐵 ⊆ (𝐴𝐵) → 𝐵𝐴)
2827con3i 150 . . . . . . 7 𝐵𝐴 → ¬ 𝐵 ⊆ (𝐴𝐵))
2913, 3ressval2 15845 . . . . . . 7 ((¬ 𝐵 ⊆ (𝐴𝐵) ∧ 𝑊 ∈ V ∧ (𝐴𝐵) ∈ V) → (𝑊s (𝐴𝐵)) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ 𝐵)⟩))
3028, 11, 12, 29syl3an 1365 . . . . . 6 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴 ∈ V) → (𝑊s (𝐴𝐵)) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ 𝐵)⟩))
3123, 24, 303eqtr4a 2686 . . . . 5 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴 ∈ V) → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
32313expb 1263 . . . 4 ((¬ 𝐵𝐴 ∧ (𝑊 ∈ V ∧ 𝐴 ∈ V)) → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
3317, 32pm2.61ian 830 . . 3 ((𝑊 ∈ V ∧ 𝐴 ∈ V) → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
34 reldmress 15842 . . . . . 6 Rel dom ↾s
3534ovprc1 6638 . . . . 5 𝑊 ∈ V → (𝑊s 𝐴) = ∅)
3634ovprc1 6638 . . . . 5 𝑊 ∈ V → (𝑊s (𝐴𝐵)) = ∅)
3735, 36eqtr4d 2663 . . . 4 𝑊 ∈ V → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
3837adantr 481 . . 3 ((¬ 𝑊 ∈ V ∧ 𝐴 ∈ V) → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
3933, 38pm2.61ian 830 . 2 (𝐴 ∈ V → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
401, 39syl 17 1 (𝐴𝑋 → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1992  Vcvv 3191   ∩ cin 3559   ⊆ wss 3560  ∅c0 3896  ⟨cop 4159  ‘cfv 5850  (class class class)co 6605  ndxcnx 15773   sSet csts 15774  Basecbs 15776   ↾s cress 15777 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-iota 5813  df-fun 5852  df-fv 5858  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-ress 15783 This theorem is referenced by:  ressress  15854  rescabs  16409  resscat  16428  funcres2c  16477  ressffth  16514  cphsubrglem  22880  suborng  29592
 Copyright terms: Public domain W3C validator