Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressiocsup Structured version   Visualization version   GIF version

Theorem ressiocsup 41828
Description: If the supremum belongs to a set of reals, the set is a subset of the unbounded below, right-closed interval, with upper bound equal to the supremum. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
ressiocsup.a (𝜑𝐴 ⊆ ℝ)
ressiocsup.s 𝑆 = sup(𝐴, ℝ*, < )
ressiocsup.e (𝜑𝑆𝐴)
ressiocsup.5 𝐼 = (-∞(,]𝑆)
Assertion
Ref Expression
ressiocsup (𝜑𝐴𝐼)

Proof of Theorem ressiocsup
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mnfxr 10697 . . . . . 6 -∞ ∈ ℝ*
21a1i 11 . . . . 5 ((𝜑𝑥𝐴) → -∞ ∈ ℝ*)
3 ressiocsup.s . . . . . 6 𝑆 = sup(𝐴, ℝ*, < )
4 ressiocsup.a . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
5 ressxr 10684 . . . . . . . . . 10 ℝ ⊆ ℝ*
65a1i 11 . . . . . . . . 9 (𝜑 → ℝ ⊆ ℝ*)
74, 6sstrd 3976 . . . . . . . 8 (𝜑𝐴 ⊆ ℝ*)
87adantr 483 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐴 ⊆ ℝ*)
98supxrcld 41371 . . . . . 6 ((𝜑𝑥𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
103, 9eqeltrid 2917 . . . . 5 ((𝜑𝑥𝐴) → 𝑆 ∈ ℝ*)
117sselda 3966 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ*)
124adantr 483 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐴 ⊆ ℝ)
13 simpr 487 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥𝐴)
1412, 13sseldd 3967 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
1514mnfltd 12518 . . . . 5 ((𝜑𝑥𝐴) → -∞ < 𝑥)
16 supxrub 12716 . . . . . . 7 ((𝐴 ⊆ ℝ*𝑥𝐴) → 𝑥 ≤ sup(𝐴, ℝ*, < ))
178, 13, 16syl2anc 586 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥 ≤ sup(𝐴, ℝ*, < ))
183a1i 11 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑆 = sup(𝐴, ℝ*, < ))
1918eqcomd 2827 . . . . . 6 ((𝜑𝑥𝐴) → sup(𝐴, ℝ*, < ) = 𝑆)
2017, 19breqtrd 5091 . . . . 5 ((𝜑𝑥𝐴) → 𝑥𝑆)
212, 10, 11, 15, 20eliocd 41781 . . . 4 ((𝜑𝑥𝐴) → 𝑥 ∈ (-∞(,]𝑆))
22 ressiocsup.5 . . . 4 𝐼 = (-∞(,]𝑆)
2321, 22eleqtrrdi 2924 . . 3 ((𝜑𝑥𝐴) → 𝑥𝐼)
2423ralrimiva 3182 . 2 (𝜑 → ∀𝑥𝐴 𝑥𝐼)
25 dfss3 3955 . 2 (𝐴𝐼 ↔ ∀𝑥𝐴 𝑥𝐼)
2624, 25sylibr 236 1 (𝜑𝐴𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wral 3138  wss 3935   class class class wbr 5065  (class class class)co 7155  supcsup 8903  cr 10535  -∞cmnf 10672  *cxr 10673   < clt 10674  cle 10675  (,]cioc 12738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-po 5473  df-so 5474  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-sup 8905  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-ioc 12742
This theorem is referenced by:  pimdecfgtioc  42992  pimincfltioc  42993
  Copyright terms: Public domain W3C validator