MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resslem Structured version   Visualization version   GIF version

Theorem resslem 15980
Description: Other elements of a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
resslem.r 𝑅 = (𝑊s 𝐴)
resslem.e 𝐶 = (𝐸𝑊)
resslem.f 𝐸 = Slot 𝑁
resslem.n 𝑁 ∈ ℕ
resslem.b 1 < 𝑁
Assertion
Ref Expression
resslem (𝐴𝑉𝐶 = (𝐸𝑅))

Proof of Theorem resslem
StepHypRef Expression
1 resslem.r . . . . . . 7 𝑅 = (𝑊s 𝐴)
2 eqid 2651 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
31, 2ressid2 15975 . . . . . 6 (((Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = 𝑊)
43fveq2d 6233 . . . . 5 (((Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
543expib 1287 . . . 4 ((Base‘𝑊) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊)))
61, 2ressval2 15976 . . . . . . 7 ((¬ (Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
76fveq2d 6233 . . . . . 6 ((¬ (Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸‘(𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩)))
8 resslem.f . . . . . . . 8 𝐸 = Slot 𝑁
9 resslem.n . . . . . . . 8 𝑁 ∈ ℕ
108, 9ndxid 15930 . . . . . . 7 𝐸 = Slot (𝐸‘ndx)
118, 9ndxarg 15929 . . . . . . . . 9 (𝐸‘ndx) = 𝑁
12 1re 10077 . . . . . . . . . 10 1 ∈ ℝ
13 resslem.b . . . . . . . . . 10 1 < 𝑁
1412, 13gtneii 10187 . . . . . . . . 9 𝑁 ≠ 1
1511, 14eqnetri 2893 . . . . . . . 8 (𝐸‘ndx) ≠ 1
16 basendx 15970 . . . . . . . 8 (Base‘ndx) = 1
1715, 16neeqtrri 2896 . . . . . . 7 (𝐸‘ndx) ≠ (Base‘ndx)
1810, 17setsnid 15962 . . . . . 6 (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
197, 18syl6eqr 2703 . . . . 5 ((¬ (Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
20193expib 1287 . . . 4 (¬ (Base‘𝑊) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊)))
215, 20pm2.61i 176 . . 3 ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
22 reldmress 15973 . . . . . . . . 9 Rel dom ↾s
2322ovprc1 6724 . . . . . . . 8 𝑊 ∈ V → (𝑊s 𝐴) = ∅)
241, 23syl5eq 2697 . . . . . . 7 𝑊 ∈ V → 𝑅 = ∅)
2524fveq2d 6233 . . . . . 6 𝑊 ∈ V → (𝐸𝑅) = (𝐸‘∅))
268str0 15958 . . . . . 6 ∅ = (𝐸‘∅)
2725, 26syl6eqr 2703 . . . . 5 𝑊 ∈ V → (𝐸𝑅) = ∅)
28 fvprc 6223 . . . . 5 𝑊 ∈ V → (𝐸𝑊) = ∅)
2927, 28eqtr4d 2688 . . . 4 𝑊 ∈ V → (𝐸𝑅) = (𝐸𝑊))
3029adantr 480 . . 3 ((¬ 𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
3121, 30pm2.61ian 848 . 2 (𝐴𝑉 → (𝐸𝑅) = (𝐸𝑊))
32 resslem.e . 2 𝐶 = (𝐸𝑊)
3331, 32syl6reqr 2704 1 (𝐴𝑉𝐶 = (𝐸𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  Vcvv 3231  cin 3606  wss 3607  c0 3948  cop 4216   class class class wbr 4685  cfv 5926  (class class class)co 6690  1c1 9975   < clt 10112  cn 11058  ndxcnx 15901   sSet csts 15902  Slot cslot 15903  Basecbs 15904  s cress 15905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-i2m1 10042  ax-1ne0 10043  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-ltxr 10117  df-nn 11059  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912
This theorem is referenced by:  ressplusg  16040  ressmulr  16053  ressstarv  16054  resssca  16078  ressvsca  16079  ressip  16080  resstset  16093  ressle  16106  ressds  16120  resshom  16125  ressco  16126  ressunif  22113
  Copyright terms: Public domain W3C validator