MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressmpladd Structured version   Visualization version   GIF version

Theorem ressmpladd 19220
Description: A restricted polynomial algebra has the same addition operation. (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
ressmpl.s 𝑆 = (𝐼 mPoly 𝑅)
ressmpl.h 𝐻 = (𝑅s 𝑇)
ressmpl.u 𝑈 = (𝐼 mPoly 𝐻)
ressmpl.b 𝐵 = (Base‘𝑈)
ressmpl.1 (𝜑𝐼𝑉)
ressmpl.2 (𝜑𝑇 ∈ (SubRing‘𝑅))
ressmpl.p 𝑃 = (𝑆s 𝐵)
Assertion
Ref Expression
ressmpladd ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(+g𝑈)𝑌) = (𝑋(+g𝑃)𝑌))

Proof of Theorem ressmpladd
StepHypRef Expression
1 ressmpl.u . . . . . 6 𝑈 = (𝐼 mPoly 𝐻)
2 eqid 2605 . . . . . 6 (𝐼 mPwSer 𝐻) = (𝐼 mPwSer 𝐻)
3 ressmpl.b . . . . . 6 𝐵 = (Base‘𝑈)
4 eqid 2605 . . . . . 6 (Base‘(𝐼 mPwSer 𝐻)) = (Base‘(𝐼 mPwSer 𝐻))
51, 2, 3, 4mplbasss 19195 . . . . 5 𝐵 ⊆ (Base‘(𝐼 mPwSer 𝐻))
65sseli 3559 . . . 4 (𝑋𝐵𝑋 ∈ (Base‘(𝐼 mPwSer 𝐻)))
75sseli 3559 . . . 4 (𝑌𝐵𝑌 ∈ (Base‘(𝐼 mPwSer 𝐻)))
86, 7anim12i 587 . . 3 ((𝑋𝐵𝑌𝐵) → (𝑋 ∈ (Base‘(𝐼 mPwSer 𝐻)) ∧ 𝑌 ∈ (Base‘(𝐼 mPwSer 𝐻))))
9 eqid 2605 . . . 4 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
10 ressmpl.h . . . 4 𝐻 = (𝑅s 𝑇)
11 eqid 2605 . . . 4 ((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))) = ((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻)))
12 ressmpl.2 . . . 4 (𝜑𝑇 ∈ (SubRing‘𝑅))
139, 10, 2, 4, 11, 12resspsradd 19179 . . 3 ((𝜑 ∧ (𝑋 ∈ (Base‘(𝐼 mPwSer 𝐻)) ∧ 𝑌 ∈ (Base‘(𝐼 mPwSer 𝐻)))) → (𝑋(+g‘(𝐼 mPwSer 𝐻))𝑌) = (𝑋(+g‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))𝑌))
148, 13sylan2 489 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(+g‘(𝐼 mPwSer 𝐻))𝑌) = (𝑋(+g‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))𝑌))
15 fvex 6094 . . . . 5 (Base‘𝑈) ∈ V
163, 15eqeltri 2679 . . . 4 𝐵 ∈ V
171, 2, 3mplval2 19194 . . . . 5 𝑈 = ((𝐼 mPwSer 𝐻) ↾s 𝐵)
18 eqid 2605 . . . . 5 (+g‘(𝐼 mPwSer 𝐻)) = (+g‘(𝐼 mPwSer 𝐻))
1917, 18ressplusg 15760 . . . 4 (𝐵 ∈ V → (+g‘(𝐼 mPwSer 𝐻)) = (+g𝑈))
2016, 19ax-mp 5 . . 3 (+g‘(𝐼 mPwSer 𝐻)) = (+g𝑈)
2120oveqi 6536 . 2 (𝑋(+g‘(𝐼 mPwSer 𝐻))𝑌) = (𝑋(+g𝑈)𝑌)
22 fvex 6094 . . . . 5 (Base‘𝑆) ∈ V
23 ressmpl.s . . . . . . 7 𝑆 = (𝐼 mPoly 𝑅)
24 eqid 2605 . . . . . . 7 (Base‘𝑆) = (Base‘𝑆)
2523, 9, 24mplval2 19194 . . . . . 6 𝑆 = ((𝐼 mPwSer 𝑅) ↾s (Base‘𝑆))
26 eqid 2605 . . . . . 6 (+g‘(𝐼 mPwSer 𝑅)) = (+g‘(𝐼 mPwSer 𝑅))
2725, 26ressplusg 15760 . . . . 5 ((Base‘𝑆) ∈ V → (+g‘(𝐼 mPwSer 𝑅)) = (+g𝑆))
2822, 27ax-mp 5 . . . 4 (+g‘(𝐼 mPwSer 𝑅)) = (+g𝑆)
29 fvex 6094 . . . . 5 (Base‘(𝐼 mPwSer 𝐻)) ∈ V
3011, 26ressplusg 15760 . . . . 5 ((Base‘(𝐼 mPwSer 𝐻)) ∈ V → (+g‘(𝐼 mPwSer 𝑅)) = (+g‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻)))))
3129, 30ax-mp 5 . . . 4 (+g‘(𝐼 mPwSer 𝑅)) = (+g‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))
32 ressmpl.p . . . . . 6 𝑃 = (𝑆s 𝐵)
33 eqid 2605 . . . . . 6 (+g𝑆) = (+g𝑆)
3432, 33ressplusg 15760 . . . . 5 (𝐵 ∈ V → (+g𝑆) = (+g𝑃))
3516, 34ax-mp 5 . . . 4 (+g𝑆) = (+g𝑃)
3628, 31, 353eqtr3i 2635 . . 3 (+g‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻)))) = (+g𝑃)
3736oveqi 6536 . 2 (𝑋(+g‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))𝑌) = (𝑋(+g𝑃)𝑌)
3814, 21, 373eqtr3g 2662 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(+g𝑈)𝑌) = (𝑋(+g𝑃)𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1975  Vcvv 3168  cfv 5786  (class class class)co 6523  Basecbs 15637  s cress 15638  +gcplusg 15710  SubRingcsubrg 18541   mPwSer cmps 19114   mPoly cmpl 19116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-int 4401  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-of 6768  df-om 6931  df-1st 7032  df-2nd 7033  df-supp 7156  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-1o 7420  df-oadd 7424  df-er 7602  df-map 7719  df-en 7815  df-dom 7816  df-sdom 7817  df-fin 7818  df-fsupp 8132  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-nn 10864  df-2 10922  df-3 10923  df-4 10924  df-5 10925  df-6 10926  df-7 10927  df-8 10928  df-9 10929  df-n0 11136  df-z 11207  df-uz 11516  df-fz 12149  df-struct 15639  df-ndx 15640  df-slot 15641  df-base 15642  df-sets 15643  df-ress 15644  df-plusg 15723  df-mulr 15724  df-sca 15726  df-vsca 15727  df-tset 15729  df-subg 17356  df-ring 18314  df-subrg 18543  df-psr 19119  df-mpl 19121
This theorem is referenced by:  ressply1add  19363
  Copyright terms: Public domain W3C validator