MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressmplmul Structured version   Visualization version   GIF version

Theorem ressmplmul 19227
Description: A restricted polynomial algebra has the same multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
ressmpl.s 𝑆 = (𝐼 mPoly 𝑅)
ressmpl.h 𝐻 = (𝑅s 𝑇)
ressmpl.u 𝑈 = (𝐼 mPoly 𝐻)
ressmpl.b 𝐵 = (Base‘𝑈)
ressmpl.1 (𝜑𝐼𝑉)
ressmpl.2 (𝜑𝑇 ∈ (SubRing‘𝑅))
ressmpl.p 𝑃 = (𝑆s 𝐵)
Assertion
Ref Expression
ressmplmul ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(.r𝑈)𝑌) = (𝑋(.r𝑃)𝑌))

Proof of Theorem ressmplmul
StepHypRef Expression
1 ressmpl.u . . . . . 6 𝑈 = (𝐼 mPoly 𝐻)
2 eqid 2609 . . . . . 6 (𝐼 mPwSer 𝐻) = (𝐼 mPwSer 𝐻)
3 ressmpl.b . . . . . 6 𝐵 = (Base‘𝑈)
4 eqid 2609 . . . . . 6 (Base‘(𝐼 mPwSer 𝐻)) = (Base‘(𝐼 mPwSer 𝐻))
51, 2, 3, 4mplbasss 19201 . . . . 5 𝐵 ⊆ (Base‘(𝐼 mPwSer 𝐻))
65sseli 3563 . . . 4 (𝑋𝐵𝑋 ∈ (Base‘(𝐼 mPwSer 𝐻)))
75sseli 3563 . . . 4 (𝑌𝐵𝑌 ∈ (Base‘(𝐼 mPwSer 𝐻)))
86, 7anim12i 587 . . 3 ((𝑋𝐵𝑌𝐵) → (𝑋 ∈ (Base‘(𝐼 mPwSer 𝐻)) ∧ 𝑌 ∈ (Base‘(𝐼 mPwSer 𝐻))))
9 eqid 2609 . . . 4 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
10 ressmpl.h . . . 4 𝐻 = (𝑅s 𝑇)
11 eqid 2609 . . . 4 ((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))) = ((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻)))
12 ressmpl.2 . . . 4 (𝜑𝑇 ∈ (SubRing‘𝑅))
139, 10, 2, 4, 11, 12resspsrmul 19186 . . 3 ((𝜑 ∧ (𝑋 ∈ (Base‘(𝐼 mPwSer 𝐻)) ∧ 𝑌 ∈ (Base‘(𝐼 mPwSer 𝐻)))) → (𝑋(.r‘(𝐼 mPwSer 𝐻))𝑌) = (𝑋(.r‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))𝑌))
148, 13sylan2 489 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(.r‘(𝐼 mPwSer 𝐻))𝑌) = (𝑋(.r‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))𝑌))
15 fvex 6097 . . . . 5 (Base‘𝑈) ∈ V
163, 15eqeltri 2683 . . . 4 𝐵 ∈ V
171, 2, 3mplval2 19200 . . . . 5 𝑈 = ((𝐼 mPwSer 𝐻) ↾s 𝐵)
18 eqid 2609 . . . . 5 (.r‘(𝐼 mPwSer 𝐻)) = (.r‘(𝐼 mPwSer 𝐻))
1917, 18ressmulr 15777 . . . 4 (𝐵 ∈ V → (.r‘(𝐼 mPwSer 𝐻)) = (.r𝑈))
2016, 19ax-mp 5 . . 3 (.r‘(𝐼 mPwSer 𝐻)) = (.r𝑈)
2120oveqi 6539 . 2 (𝑋(.r‘(𝐼 mPwSer 𝐻))𝑌) = (𝑋(.r𝑈)𝑌)
22 fvex 6097 . . . . 5 (Base‘𝑆) ∈ V
23 ressmpl.s . . . . . . 7 𝑆 = (𝐼 mPoly 𝑅)
24 eqid 2609 . . . . . . 7 (Base‘𝑆) = (Base‘𝑆)
2523, 9, 24mplval2 19200 . . . . . 6 𝑆 = ((𝐼 mPwSer 𝑅) ↾s (Base‘𝑆))
26 eqid 2609 . . . . . 6 (.r‘(𝐼 mPwSer 𝑅)) = (.r‘(𝐼 mPwSer 𝑅))
2725, 26ressmulr 15777 . . . . 5 ((Base‘𝑆) ∈ V → (.r‘(𝐼 mPwSer 𝑅)) = (.r𝑆))
2822, 27ax-mp 5 . . . 4 (.r‘(𝐼 mPwSer 𝑅)) = (.r𝑆)
29 fvex 6097 . . . . 5 (Base‘(𝐼 mPwSer 𝐻)) ∈ V
3011, 26ressmulr 15777 . . . . 5 ((Base‘(𝐼 mPwSer 𝐻)) ∈ V → (.r‘(𝐼 mPwSer 𝑅)) = (.r‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻)))))
3129, 30ax-mp 5 . . . 4 (.r‘(𝐼 mPwSer 𝑅)) = (.r‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))
32 ressmpl.p . . . . . 6 𝑃 = (𝑆s 𝐵)
33 eqid 2609 . . . . . 6 (.r𝑆) = (.r𝑆)
3432, 33ressmulr 15777 . . . . 5 (𝐵 ∈ V → (.r𝑆) = (.r𝑃))
3516, 34ax-mp 5 . . . 4 (.r𝑆) = (.r𝑃)
3628, 31, 353eqtr3i 2639 . . 3 (.r‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻)))) = (.r𝑃)
3736oveqi 6539 . 2 (𝑋(.r‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))𝑌) = (𝑋(.r𝑃)𝑌)
3814, 21, 373eqtr3g 2666 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(.r𝑈)𝑌) = (𝑋(.r𝑃)𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  Vcvv 3172  cfv 5789  (class class class)co 6526  Basecbs 15643  s cress 15644  .rcmulr 15717  SubRingcsubrg 18547   mPwSer cmps 19120   mPoly cmpl 19122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-of 6772  df-ofr 6773  df-om 6935  df-1st 7036  df-2nd 7037  df-supp 7160  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-ixp 7772  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fsupp 8136  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10870  df-2 10928  df-3 10929  df-4 10930  df-5 10931  df-6 10932  df-7 10933  df-8 10934  df-9 10935  df-n0 11142  df-z 11213  df-uz 11522  df-fz 12155  df-seq 12621  df-struct 15645  df-ndx 15646  df-slot 15647  df-base 15648  df-sets 15649  df-ress 15650  df-plusg 15729  df-mulr 15730  df-sca 15732  df-vsca 15733  df-tset 15735  df-0g 15873  df-gsum 15874  df-mgm 17013  df-sgrp 17055  df-mnd 17066  df-submnd 17107  df-grp 17196  df-minusg 17197  df-subg 17362  df-mgp 18261  df-ring 18320  df-subrg 18549  df-psr 19125  df-mpl 19127
This theorem is referenced by:  ressply1mul  19370
  Copyright terms: Public domain W3C validator