Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressmulgnn Structured version   Visualization version   GIF version

Theorem ressmulgnn 29465
Description: Values for the group multiple function in a restricted structure. (Contributed by Thierry Arnoux, 12-Jun-2017.)
Hypotheses
Ref Expression
ressmulgnn.1 𝐻 = (𝐺s 𝐴)
ressmulgnn.2 𝐴 ⊆ (Base‘𝐺)
ressmulgnn.3 = (.g𝐺)
ressmulgnn.4 𝐼 = (invg𝐺)
Assertion
Ref Expression
ressmulgnn ((𝑁 ∈ ℕ ∧ 𝑋𝐴) → (𝑁(.g𝐻)𝑋) = (𝑁 𝑋))

Proof of Theorem ressmulgnn
StepHypRef Expression
1 ressmulgnn.2 . . . 4 𝐴 ⊆ (Base‘𝐺)
2 ressmulgnn.1 . . . . 5 𝐻 = (𝐺s 𝐴)
3 eqid 2621 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
42, 3ressbas2 15852 . . . 4 (𝐴 ⊆ (Base‘𝐺) → 𝐴 = (Base‘𝐻))
51, 4ax-mp 5 . . 3 𝐴 = (Base‘𝐻)
6 eqid 2621 . . 3 (+g𝐻) = (+g𝐻)
7 eqid 2621 . . 3 (.g𝐻) = (.g𝐻)
8 fvex 6158 . . . . . 6 (Base‘𝐺) ∈ V
98, 1ssexi 4763 . . . . 5 𝐴 ∈ V
10 eqid 2621 . . . . . 6 (+g𝐺) = (+g𝐺)
112, 10ressplusg 15914 . . . . 5 (𝐴 ∈ V → (+g𝐺) = (+g𝐻))
129, 11ax-mp 5 . . . 4 (+g𝐺) = (+g𝐻)
13 seqeq2 12745 . . . 4 ((+g𝐺) = (+g𝐻) → seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋})))
1412, 13ax-mp 5 . . 3 seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋}))
155, 6, 7, 14mulgnn 17468 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐴) → (𝑁(.g𝐻)𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
16 simpr 477 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑋𝐴) → 𝑋𝐴)
171, 16sseldi 3581 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐴) → 𝑋 ∈ (Base‘𝐺))
18 ressmulgnn.3 . . . 4 = (.g𝐺)
19 eqid 2621 . . . 4 seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐺), (ℕ × {𝑋}))
203, 10, 18, 19mulgnn 17468 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐺)) → (𝑁 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
2117, 20syldan 487 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐴) → (𝑁 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
2215, 21eqtr4d 2658 1 ((𝑁 ∈ ℕ ∧ 𝑋𝐴) → (𝑁(.g𝐻)𝑋) = (𝑁 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  Vcvv 3186  wss 3555  {csn 4148   × cxp 5072  cfv 5847  (class class class)co 6604  1c1 9881  cn 10964  seqcseq 12741  Basecbs 15781  s cress 15782  +gcplusg 15862  invgcminusg 17344  .gcmg 17461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-z 11322  df-seq 12742  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulg 17462
This theorem is referenced by:  ressmulgnn0  29466
  Copyright terms: Public domain W3C validator