MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressn Structured version   Visualization version   GIF version

Theorem ressn 6130
Description: Restriction of a class to a singleton. (Contributed by Mario Carneiro, 28-Dec-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
ressn (𝐴 ↾ {𝐵}) = ({𝐵} × (𝐴 “ {𝐵}))

Proof of Theorem ressn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 5876 . 2 Rel (𝐴 ↾ {𝐵})
2 relxp 5567 . 2 Rel ({𝐵} × (𝐴 “ {𝐵}))
3 vex 3497 . . . . . 6 𝑥 ∈ V
4 vex 3497 . . . . . 6 𝑦 ∈ V
53, 4elimasn 5948 . . . . 5 (𝑦 ∈ (𝐴 “ {𝑥}) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
6 elsni 4577 . . . . . . . 8 (𝑥 ∈ {𝐵} → 𝑥 = 𝐵)
76sneqd 4572 . . . . . . 7 (𝑥 ∈ {𝐵} → {𝑥} = {𝐵})
87imaeq2d 5923 . . . . . 6 (𝑥 ∈ {𝐵} → (𝐴 “ {𝑥}) = (𝐴 “ {𝐵}))
98eleq2d 2898 . . . . 5 (𝑥 ∈ {𝐵} → (𝑦 ∈ (𝐴 “ {𝑥}) ↔ 𝑦 ∈ (𝐴 “ {𝐵})))
105, 9syl5bbr 287 . . . 4 (𝑥 ∈ {𝐵} → (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 ∈ (𝐴 “ {𝐵})))
1110pm5.32i 577 . . 3 ((𝑥 ∈ {𝐵} ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴) ↔ (𝑥 ∈ {𝐵} ∧ 𝑦 ∈ (𝐴 “ {𝐵})))
124opelresi 5855 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ↾ {𝐵}) ↔ (𝑥 ∈ {𝐵} ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴))
13 opelxp 5585 . . 3 (⟨𝑥, 𝑦⟩ ∈ ({𝐵} × (𝐴 “ {𝐵})) ↔ (𝑥 ∈ {𝐵} ∧ 𝑦 ∈ (𝐴 “ {𝐵})))
1411, 12, 133bitr4i 305 . 2 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ↾ {𝐵}) ↔ ⟨𝑥, 𝑦⟩ ∈ ({𝐵} × (𝐴 “ {𝐵})))
151, 2, 14eqrelriiv 5657 1 (𝐴 ↾ {𝐵}) = ({𝐵} × (𝐴 “ {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wa 398   = wceq 1533  wcel 2110  {csn 4560  cop 4566   × cxp 5547  cres 5551  cima 5552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-br 5059  df-opab 5121  df-xp 5555  df-rel 5556  df-cnv 5557  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562
This theorem is referenced by:  gsum2dlem2  19085  dprd2da  19158  ustneism  22826
  Copyright terms: Public domain W3C validator