MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressnop0 Structured version   Visualization version   GIF version

Theorem ressnop0 6914
Description: If 𝐴 is not in 𝐶, then the restriction of a singleton of 𝐴, 𝐵 to 𝐶 is null. (Contributed by Scott Fenton, 15-Apr-2011.)
Assertion
Ref Expression
ressnop0 𝐴𝐶 → ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅)

Proof of Theorem ressnop0
StepHypRef Expression
1 opelxp1 5595 . . 3 (⟨𝐴, 𝐵⟩ ∈ (𝐶 × V) → 𝐴𝐶)
21con3i 157 . 2 𝐴𝐶 → ¬ ⟨𝐴, 𝐵⟩ ∈ (𝐶 × V))
3 df-res 5566 . . . 4 ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ({⟨𝐴, 𝐵⟩} ∩ (𝐶 × V))
4 incom 4177 . . . 4 ({⟨𝐴, 𝐵⟩} ∩ (𝐶 × V)) = ((𝐶 × V) ∩ {⟨𝐴, 𝐵⟩})
53, 4eqtri 2844 . . 3 ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ((𝐶 × V) ∩ {⟨𝐴, 𝐵⟩})
6 disjsn 4646 . . . 4 (((𝐶 × V) ∩ {⟨𝐴, 𝐵⟩}) = ∅ ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ (𝐶 × V))
76biimpri 230 . . 3 (¬ ⟨𝐴, 𝐵⟩ ∈ (𝐶 × V) → ((𝐶 × V) ∩ {⟨𝐴, 𝐵⟩}) = ∅)
85, 7syl5eq 2868 . 2 (¬ ⟨𝐴, 𝐵⟩ ∈ (𝐶 × V) → ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅)
92, 8syl 17 1 𝐴𝐶 → ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1533  wcel 2110  Vcvv 3494  cin 3934  c0 4290  {csn 4566  cop 4572   × cxp 5552  cres 5556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pr 5329
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4567  df-pr 4569  df-op 4573  df-opab 5128  df-xp 5560  df-res 5566
This theorem is referenced by:  fvunsn  6940  fsnunres  6949  wfrlem14  7967  ex-res  28219  frrlem12  33134
  Copyright terms: Public domain W3C validator