Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressplusf Structured version   Visualization version   GIF version

Theorem ressplusf 29624
Description: The group operation function +𝑓 of a structure's restriction is the operation function's restriction to the new base. (Contributed by Thierry Arnoux, 26-Mar-2017.)
Hypotheses
Ref Expression
ressplusf.1 𝐵 = (Base‘𝐺)
ressplusf.2 𝐻 = (𝐺s 𝐴)
ressplusf.3 = (+g𝐺)
ressplusf.4 Fn (𝐵 × 𝐵)
ressplusf.5 𝐴𝐵
Assertion
Ref Expression
ressplusf (+𝑓𝐻) = ( ↾ (𝐴 × 𝐴))

Proof of Theorem ressplusf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ressplusf.5 . . 3 𝐴𝐵
2 resmpt2 6743 . . 3 ((𝐴𝐵𝐴𝐵) → ((𝑥𝐵, 𝑦𝐵 ↦ (𝑥 𝑦)) ↾ (𝐴 × 𝐴)) = (𝑥𝐴, 𝑦𝐴 ↦ (𝑥 𝑦)))
31, 1, 2mp2an 707 . 2 ((𝑥𝐵, 𝑦𝐵 ↦ (𝑥 𝑦)) ↾ (𝐴 × 𝐴)) = (𝑥𝐴, 𝑦𝐴 ↦ (𝑥 𝑦))
4 ressplusf.4 . . . 4 Fn (𝐵 × 𝐵)
5 fnov 6753 . . . 4 ( Fn (𝐵 × 𝐵) ↔ = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 𝑦)))
64, 5mpbi 220 . . 3 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 𝑦))
76reseq1i 5381 . 2 ( ↾ (𝐴 × 𝐴)) = ((𝑥𝐵, 𝑦𝐵 ↦ (𝑥 𝑦)) ↾ (𝐴 × 𝐴))
8 ressplusf.2 . . . . 5 𝐻 = (𝐺s 𝐴)
9 ressplusf.1 . . . . 5 𝐵 = (Base‘𝐺)
108, 9ressbas2 15912 . . . 4 (𝐴𝐵𝐴 = (Base‘𝐻))
111, 10ax-mp 5 . . 3 𝐴 = (Base‘𝐻)
12 ressplusf.3 . . . 4 = (+g𝐺)
13 fvex 6188 . . . . . . 7 (Base‘𝐺) ∈ V
149, 13eqeltri 2695 . . . . . 6 𝐵 ∈ V
1514, 1ssexi 4794 . . . . 5 𝐴 ∈ V
16 eqid 2620 . . . . . 6 (+g𝐺) = (+g𝐺)
178, 16ressplusg 15974 . . . . 5 (𝐴 ∈ V → (+g𝐺) = (+g𝐻))
1815, 17ax-mp 5 . . . 4 (+g𝐺) = (+g𝐻)
1912, 18eqtri 2642 . . 3 = (+g𝐻)
20 eqid 2620 . . 3 (+𝑓𝐻) = (+𝑓𝐻)
2111, 19, 20plusffval 17228 . 2 (+𝑓𝐻) = (𝑥𝐴, 𝑦𝐴 ↦ (𝑥 𝑦))
223, 7, 213eqtr4ri 2653 1 (+𝑓𝐻) = ( ↾ (𝐴 × 𝐴))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1481  wcel 1988  Vcvv 3195  wss 3567   × cxp 5102  cres 5106   Fn wfn 5871  cfv 5876  (class class class)co 6635  cmpt2 6637  Basecbs 15838  s cress 15839  +gcplusg 15922  +𝑓cplusf 17220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-2 11064  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-plusf 17222
This theorem is referenced by:  xrge0pluscn  29960  xrge0tmdOLD  29965
  Copyright terms: Public domain W3C validator